.. module:: ase.calculators.emt :synopsis: Effective Medium Theory ========================== Pure Python EMT calculator ========================== The EMT potential is included in the ASE package in order to have a simple calculator that can be used for quick demonstrations and tests. .. warning:: If you want to do a real application using EMT, you should use the *much* more efficient implementation in the ASAP_ calculator. .. autoclass:: ase.calculators.emt.EMT :class-doc-from: class .. _ASAP: http://wiki.fysik.dtu.dk/asap Theory ------ In the following, the seven parameters :math:`E_{0i}`, :math:`s_{0i}`, :math:`V_{0i}`, :math:`\eta_{2i}`, :math:`\kappa_{i}`, :math:`\lambda_{i}`, and :math:`n_{0i}` are specific for the species of atom :math:`i`. Energy ^^^^^^ In the effective-medium theory (EMT), the energy is given by .. math:: E = \sum_{i=1}^{N} (E_{\mathrm{c},i} + E_{\mathrm{AS},i}) The cohesive function :math:`E_{\mathrm{c},i}` describes the energy in the reference system, where we assume the face-centered cubic (fcc) structure and given by .. math:: E_{\mathrm{c},i} = E_{0i} f(\lambda_i (s_{i} - s_{0i})) = E_{0i} f(\lambda_i \dot{s}_{i}) .. math:: f(x) = (1 + x) \exp(-x) where :math:`E_{0i}` is the cohesive energy, :math:`s_{0i}` is the Wigner–Seitz radius in the equilibrium fcc state, and :math:`\lambda_i` is related to the curvature of the energy–volume curve and thus to the bulk modulus. :math:`s_i` is the neutral-sphere radius, and .. math:: \dot{s}_i = s_{i} - s_{0i} = - \frac{1}{\beta \eta_{2i}} \log \frac{\sigma_{1i}}{12 \gamma_{1i}} where :math:`\beta` is the constant related to the Wigner–Seitz radius and the first nearest neighbor distance (cf. `Tips`_). :math:`\sigma_{1i}`` is given by .. math:: \sigma_{1i} = \sum_{j} \chi_{ij} w(r_{ij}) \exp(- \eta_{2j} (r_{ij} - \beta s_{0j})) = \sum_{j} \dot{\sigma}_{1ij}^\mathrm{s} The summation is over the neighbors of atom :math:`i`. :math:`r_{ij}` is the distance of atoms :math:`i` and :math:`j` and given using their position vectors :math:`\mathbf{r}_i` and :math:`\mathbf{r}_j` by .. math:: r_{ij} = |\mathbf{r}_{ij}| = |\mathbf{r}_{j} - \mathbf{r}_i| :math:`\chi_{ij}` is given by .. math:: \chi_{ij} = \frac{n_{0j}}{n_{0i}} The contribution from atom :math:`j` is given by .. math:: \dot{\sigma}_{1ij}^\mathrm{s} = \chi_{ij} w(r_{ij}) \exp(- \eta_{2j} (r_{ij} - \beta s_{0j})) For later convenience in `Forces`_, the contribution from atom :math:`i` to atom :math:`j` is also written as; .. math:: \dot{\sigma}_{1ij}^\mathrm{o} = \chi_{ji} w(r_{ij}) \exp(- \eta_{2i} (r_{ij} - \beta s_{0i})) :math:`w(r)` is the smooth cutoff function given by .. math:: w(r) = \frac{1}{1 + \exp(a (r - r_\mathrm{c}))} :math:`\gamma_{1i}` is a correction factor when considering beyond the first nearest neighbor sites and given by (cf. `Tips`_) .. math:: \gamma_{1i} = \frac{1}{12} ( n^\mathrm{1NN} w(d_0^\mathrm{1NN}) \exp(\eta_{2i} (d_0^\mathrm{1NN} - \beta s_{0i})) + n^\mathrm{2NN} w(d_0^\mathrm{2NN}) \exp(\eta_{2i} (d_0^\mathrm{2NN} - \beta s_{0i})) + n^\mathrm{3NN} w(d_0^\mathrm{3NN}) \exp(\eta_{2i} (d_0^\mathrm{3NN} - \beta s_{0i})) + \cdots ) which is :math:`1` when considering only up to the first nearest neighbors of the equilibrium fcc structure. The atomic-sphere correction :math:`E_{\mathrm{AS},i}` describes the derivation from the reference fcc system and given by .. math:: E_{\mathrm{AS},i} = E_{\mathrm{AS},i}^{1} + E_{\mathrm{AS},i}^{2} :math:`E_{\mathrm{AS},i}^{1}` is the pair interactions of the real system, and :math:`E_{\mathrm{AS},i}^{2}` is the negative of the pair interactions of the reference unary perfect fcc structure. Both terms are described using the following pair interaction function; .. math:: V_{ij} (r) = -V_{0i} \cdot \frac{1}{\gamma_{2i}} \chi_{ij} w(r) \exp(-\frac{\kappa_{j}}{\beta}(r - \beta s_{0j})) :math:`\gamma_{2i}` is a correction factor when considering beyond the first nearest neighbor sites and given by (cf. `Tips`_) .. math:: \gamma_{2i} = \frac{1}{12} ( n_\mathrm{1NN} w(d_\mathrm{1NN}) \exp(-\frac{\kappa_{2i}}{\beta} (r_\mathrm{1NN} - \beta s_{0i})) + n_\mathrm{2NN} w(d_\mathrm{2NN}) \exp(-\frac{\kappa_{2i}}{\beta} (r_\mathrm{2NN} - \beta s_{0i})) + n_\mathrm{3NN} w(d_\mathrm{3NN}) \exp(-\frac{\kappa_{2i}}{\beta} (r_\mathrm{3NN} - \beta s_{0i})) + \cdots ) Here, if we consider only up to the first nearest neighbors, .. math:: \gamma_{2i} \rightarrow 1 For :math:`E_{\mathrm{AS},i}^{2}`, only the interactions up to the first nearest neighbors are considered, i.e., :math:`j = i` and :math:`r_{ij} = d^\mathrm{1NN} = \beta s_{i}`. Thus, .. math:: E_{\mathrm{AS},i}^{2} = \frac{1}{2} n^\mathrm{1NN} V_{ii}(d^\mathrm{1NN}) = -\frac{12}{2} V_{ii} (\beta s_{i}) = 6 V_{0i} \exp(-\kappa_{i} \dot{s}_i) The first term :math:`E_{\mathrm{AS},i}^{1}` is the pair interactions of the real system. Here we consider the interactions up to a certain cutoff radius, and we average the contribution from atom :math:`i` to atom :math:`j` and that from atom :math:`j` to atom :math:`i`. Thus, .. math:: E_{\mathrm{AS},i}^{1} = \frac{1}{2} \sum_{j} \frac{1}{2} \left(V_{ij}(r_{ij}) + V_{ji}(r_{ij})\right) = - \frac{V_{0i}}{2 \gamma_{2i}} \cdot \frac{1}{2} \sum_{j} (\dot{\sigma}_{2ij}^\mathrm{s} + \dot{\sigma}_{2ij}^\mathrm{o}) where .. math:: \dot{\sigma}_{2ij}^\mathrm{s} = \chi_{ij} w(r_{ij}) \exp(-\frac{\kappa_j}{\beta} (r_{ij} - \beta s_{0j})) .. math:: \dot{\sigma}_{2ij}^\mathrm{o} = \chi_{ji} w(r_{ij}) \exp(-\frac{\kappa_i}{\beta} (r_{ij} - \beta s_{0i})) and further for unary perfect fcc systems, Forces ^^^^^^ The forces on atom :math:`i` can be computed as .. math:: \mathbf{F}_{i} = -\nabla_i E = \sum_j \frac{\partial E}{\partial r_{ij}} \frac{\mathbf{r}_{ij}}{r_{ij}} = \sum_j \mathbf{f}_{ij} where the force applied on atom :math:`i` by atom :math:`j` is given by .. math:: \mathbf{f}_{ij} = \frac{\partial E}{\partial r_{ij}} \frac{\mathbf{r}_{ij}}{r_{ij}} The derivative of :math:`E` with respect to :math:`r_{ij}` is further written as .. math:: \frac{\partial E}{\partial r_{ij}} = \left( \frac{\partial E_{\mathrm{c},i}}{\partial r_{ij}} + \frac{\partial E_{\mathrm{c},j}}{\partial r_{ij}} + \frac{\partial E_{\mathrm{AS},i}^2}{\partial r_{ij}} + \frac{\partial E_{\mathrm{AS},j}^2}{\partial r_{ij}} \right) + \left( \frac{\partial E_{\mathrm{AS},i}^1}{\partial r_{ij}} + \frac{\partial E_{\mathrm{AS},j}^1}{\partial r_{ij}} \right) Be careful that we also need to consider the contribution of the energy term associated to atom :math:`j`. The first terms depend on :math:`r_{ij}` indirectly via `s_{i}` and `s_{j}`. .. math:: \frac{\partial E_{\mathrm{c},i}}{\partial r_{ij}} = \frac{\partial E_{\mathrm{c},i}}{\partial s_{i}} \frac{\partial s_i}{\partial \sigma_{1i}} \frac{\partial \sigma_{1i}}{\partial r_{ij}} .. math:: \frac{\partial E_{\mathrm{c},j}}{\partial r_{ij}} = \frac{\partial E_{\mathrm{c},j}}{\partial s_{j}} \frac{\partial s_j}{\partial \sigma_{1j}} \frac{\partial \sigma_{1j}}{\partial r_{ij}} .. math:: \frac{\partial E_{\mathrm{AS},i}^2}{\partial r_{ij}} = \frac{\partial E_{\mathrm{AS},i}^2}{\partial s_{i}} \frac{\partial s_i}{\partial \sigma_{1i}} \frac{\partial \sigma_{1i}}{\partial r_{ij}} .. math:: \frac{\partial E_{\mathrm{AS},j}^2}{\partial r_{ij}} = \frac{\partial E_{\mathrm{AS},j}^2}{\partial s_{j}} \frac{\partial s_j}{\partial \sigma_{1j}} \frac{\partial \sigma_{1j}}{\partial r_{ij}} They can be computed using .. math:: \frac{\partial E_{\mathrm{c},i}}{\partial s_i} = - E_{0i} \lambda_i^2 \dot{s}_i \exp(-\lambda_i \dot{s}_i) .. math:: \frac{\partial E_\mathrm{AS}^2}{\partial s_i} = -6 V_{0i} \kappa_i \exp(-\kappa_i \dot{s}_i) .. math:: \frac{\mathrm{d}s_i}{\mathrm{d}\sigma_{1i}} = \frac{\mathrm{d}\dot{s}_i}{\mathrm{d}\sigma_{1i}} = -\frac{1}{\beta\eta_{2i}} \frac{1}{\sigma_{1i}} .. math:: \frac{\partial \sigma_{1i}}{\partial r_{ij}} = \chi_{ij} \left( \frac{\partial w}{\partial r_{ij}} \exp(-\eta_{2j} (r_{ij} - \beta s_{0j})) - w(r_{ij}) \eta_{2j} \exp(-\eta_{2j} (r_{ij} - \beta s_{0j})) \right) = \left( \frac{1}{w(r_{ij})} \frac{\partial w}{\partial r_{ij}} - \eta_{2j} \right) \dot{\sigma}_{1ij}^\mathrm{s} .. math:: \frac{\partial \sigma_{1j}}{\partial r_{ij}} = \chi_{ji} \left( \frac{\partial w}{\partial r_{ij}} \exp(-\eta_{2i} (r_{ij} - \beta s_{0i})) - w(r_{ij}) \eta_{2i} \exp(-\eta_{2i} (r_{ij} - \beta s_{0i})) \right) = \left( \frac{1}{w(r_{ij})} \frac{\partial w}{\partial r_{ij}} - \eta_{2i} \right) \dot{\sigma}_{1ij}^\mathrm{o} The second part directly depends on :math:`r_{ij}` and given by .. math:: \frac{\partial E_{\mathrm{AS},i}^1}{\partial r_{ij}} + \frac{\partial E_{\mathrm{AS},j}^1}{\partial r_{ij}} = - \frac{1}{2} \left( \frac{V_{0i}}{2 \gamma_{2i}} \frac{\partial \dot{\sigma}_{2ij}^\mathrm{s}}{\partial r_{ij}} + \frac{V_{0j}}{2 \gamma_{2j}} \frac{\partial \dot{\sigma}_{2ij}^\mathrm{o}}{\partial r_{ij}} \right) where .. math:: \frac{\partial \dot{\sigma}_{2ij}^\mathrm{s}}{\partial r_{ij}} = \chi_{ij} \left( \frac{\partial w}{\partial r_{ij}} \exp(-\frac{\kappa_j}{\beta} (r_{ij} - \beta s_{0j})) - w(r_{ij}) \frac{\kappa_j}{\beta} \exp(-\frac{\kappa_j}{\beta} (r_{ij} - \beta s_{0j})) \right) = \left( \frac{1}{w(r_{ij})} \frac{\partial w}{\partial r_{ij}} - \frac{\kappa_j}{\beta} \right) \dot{\sigma}_{2ij}^\mathrm{s} .. math:: \frac{\partial \dot{\sigma}_{2ij}^\mathrm{o}}{\partial r_{ij}} = \chi_{ji} \left( \frac{\partial w}{\partial r_{ij}} \exp(-\frac{\kappa_i}{\beta} (r_{ij} - \beta s_{0i})) - w(r_{ij}) \frac{\kappa_i}{\beta} \exp(-\frac{\kappa_i}{\beta} (r_{ij} - \beta s_{0i})) \right) = \left( \frac{1}{w(r_{ij})} \frac{\partial w}{\partial r_{ij}} - \frac{\kappa_i}{\beta} \right) \dot{\sigma}_{2ij}^\mathrm{o} Note that .. math:: \frac{\mathrm{d}w}{\mathrm{d}r} = a w(r) (w(r) - 1) Stress ^^^^^^ The static part of the virial stress can be given as .. math:: \tau^{\alpha \beta} = \frac{1}{\Omega} \frac{1}{2} \sum_{i=1}^{N} \sum_{j \neq i} r_{ij}^{\alpha} f_{ij}^{\beta} = \frac{1}{\Omega} \sum_{i=1}^{N} \sum_{j > i} r_{ij}^{\alpha} f_{ij}^{\beta} where :math:`\alpha` and :math:`\beta` are indices for Cartesian components. When considering all the neighbors for each atom, we should not forget the factor :math:`1/2`. Tips ^^^^ For the fcc structure, the numbers of neighbor sites and the distances of first several shells are .. math:: :wowrap: n^\mathrm{1NN} &= 12, & \quad d^\mathrm{1NN} &= \beta s_{i} \\ n^\mathrm{2NN} &= \phantom{0}6, & \quad d^\mathrm{2NN} &= \sqrt{2}\,d^\mathrm{1NN} \\ n^\mathrm{3NN} &= 24, & \quad d^\mathrm{3NN} &= \sqrt{3}\,d^\mathrm{1NN} \\ n^\mathrm{4NN} &= 12, & \quad d^\mathrm{4NN} &= \sqrt{4}\,d^\mathrm{1NN} \\ n^\mathrm{5NN} &= 24, & \quad d^\mathrm{5NN} &= \sqrt{5}\,d^\mathrm{1NN} where :math:`s_{i}` is the Wigner–Seitz radius of the species of atom :math:`i` and :math:`\beta = 2^{-1/2} (16 \pi / 3)^{1/3} \approx 1.809`.