.. module:: ase.calculators.onetep ====== ONETEP ====== Introduction ============ ONETEP_ is a linear-scaling density functional theory code which exploit the near-sightness of the electronic density. It uses a set of atom-centered local orbitals (denoted NGWFs) which are optimised in situ to enable calculations with a minimal number of orbitals. This interface makes it possible to use ONETEP as a calculator in ASE. You need to have a copy of the ONETEP code (and an appropriate license) to use this interface. .. _ONETEP: http://www.onetep.org Environment variables ===================== The environment variable :envvar:`ASE_ONETEP_COMMAND` must hold the command to invoke the ONETEP calculation. The variable must be a string with a link to the ONETEP binary, and any other specific settings required for your environment (srun, mpirun, ...) You can setup this environment variable in your shell configuration file: .. highlight:: bash :: $ export ASE_ONETEP_COMMAND="export OMP_NUM_THREADS=4; mpirun -n 6 ~/onetep/bin/onetep.arch" .. highlight:: python Or within python itself: >>> environ["ASE_ONETEP_COMMAND"]="export OMP_NUM_THREADS=4; mpirun -n 6 ~/onetep/bin/onetep.arch" ASE will automatically redirect stdout and stderr to the appropriate files, namely "$LABEL.out" and "$LABEL.err" where label is the name used for your ONETEP calculations Pseudopotentials ================ ONETEP accepts PAW datasets and NCP pseudpotentials with formats USP and recpot. Pseudopotentials are passed directly to the Onetep calculator as a dictionnary definition. If no pseudopotentials are passed ASE will try to guess the files based on the element used and the pseudo_path variable. :: # Explicitly providing each path calc = Onetep(pseudopotentials = {'H': '/path/to/pseudos/H.usp', 'O': '/path/to/pseudos/O.usp'}) # Using pseudo_path calc = Onetep(pseudo_path = '/path/to/pseudos', pseudopotentials = {'H': 'H.usp', 'O': 'O.usp'}) # ASE will try to guess them calc = Onetep(pseudo_path = '/path/to/pseudos') For ASE to correctly guess the pseudopotentials use a pseudo_path that contains only one kind of pseudopotential per element. .. highlight:: python ONETEP Calculator ================= .. autoclass:: ase.calculators.onetep.Onetep Simple calculations can be setup calling the Onetep calculator without any parameters, in this case ONETEP default parameters will be used. For more complex cases using the keywords parameters is necessary. The 'keywords' parameters is a dictionnary in which each key is a string that represent a ONETEP keywords. Examples ======== Here is an example of setting up a calculation on a water molecule: :: from ase.build import molecule from ase.calculators.onetep import Onetep from os import environ # water molecule from ASE database, centered in a ~ 24 Å box wat = molecule('H2O') wat.center(12) environ["ASE_ONETEP_COMMAND"]="export OMP_NUM_THREADS=8; mpirun -n 2 ~/onetep/bin/onetep.arch" # Ouput will be in "water.out" calc = Onetep(label = 'water', xc = 'PBE', paw = True, pseudo_path = '/path/to/pseudos') wat.calc = calc wat.get_potential_energy() .. highlight:: python Another more complex example on Pt13: :: from os import environ import numpy as np from ase.build import molecule from ase.calculators.onetep import Onetep from ase.cluster import Octahedron from ase.optimize.sciopt import SciPyFminBFGS # Pt13 from ase.cluster nano = Octahedron('Pt', 3, 1) nano.set_cell(np.eye(3)*12) nano.center() label = 'pt13' environ["ASE_ONETEP_COMMAND"]="export OMP_NUM_THREADS=8; mpirun -n 8 ~/onetep/bin/onetep.arch" # ONETEP default are atomic units, one can specify 'cutoff_energy' : '600 eV' if needed. keywords = { 'xc' : 'rpbe', 'do_properties' : True, 'cutoff_energy' : 35, 'output_detail': 'verbose', 'elec_energy_tol': 1.0e-5/len(atoms), } # Ouput will be in "pt13.out", # append = True will not overwrite file at each step calc = Onetep( label = label, edft = True, append = True, pseudo_path = '/path/to/pseudos', keywords = keywords) nanoparticle.calc = calc opt = SciPyFminBFGS(atoms = nano, trajectory = label + ".traj", logfile = label + ".log") opt.run(fmax=0.01) .. highlight:: python Here is an example of setting up an EELS and LDOS calculations on an N-substituted graphene sheet, demonstrating several more advanced functionalities (eg tags, species groups, and overrides to pseudopotentials and atomic solver strings): :: import numpy as np from ase.build import graphene_nanoribbon from ase.calculators.onetep import Onetep from ase.io import write from numpy.linalg import norm from numpy.random import choice sheet = graphene_nanoribbon(10, 10, type='zigzag', vacuum = 10) # Get all distances to center of mass com = sheet.get_center_of_mass() distances_to_com = norm(sheet.positions - com, axis = 1) # Find atoms close to com and change one randomly to N p, = np.where(distances_to_com < 5) to_nitro = choice(p) sheet[to_nitro].symbol = 'N' shell_rad = np.array([1.5, 2.5, 3.0, 4.0, 4.5]) tags = np.zeros(len(sheet), dtype=np.int32) # We want to tag atoms that are close to the introduced nitrogen for idx, rad in enumerate(reversed(shell_rad)): # All distances N-C dist = norm(sheet[to_nitro].position - sheet.get_positions(), axis = 1) # Which ones are closest to rad? p, = np.where(dist < rad) # Cannot be the nitrogen itself p = p[p != to_nitro] # Tags them tags[p] = len(shell_rad) - idx sheet.set_tags(tags) tags = ['' if i == 0 else i for i in tags] species = np.unique(np.char.add(sheet.get_chemical_symbols(), tags)) keywords = { 'species_core_wf' : ['N /path/to/pseudo/corehole.abinit'], 'species_solver' : ['N SOLVE conf=1s1 2p4'], 'pseudo_path': '/Users/tomdm/PseudoPotentials/SSSP_1.2.1', 'xc' : 'PBE', 'paw': True, 'do_properties': True, 'cutoff_energy' : '500 eV', 'species_ldos_groups': species, 'task' : 'GeometryOptimization' } calc = Onetep( label = 'N_doped_graphene_001', keywords = keywords ) # Checking the input before running the calculation write('to_check.dat', sheet, format='onetep-in', keywords = keywords) sheet.calc = calc # Will actually run the geometry optimisation # using ONETEP internal BFGS sheet.get_potential_energy() .. highlight:: python Quickly restart with solvation effect using the soft sphere model :: from ase.io import read from ase.io.onetep import get_onetep_keywords # Read from the previous run... optimized_sheet = read("N_doped_graphene_001.out") # Function to retrieve keywords dict from input file... keywords = get_onetep_keywords('N_doped_graphene_001.dat') # We add solvation keywords keywords.update( { 'is_implicit_solvent': True, 'is_include_apolar': True, 'is_smeared_ion_rep': True, 'is_dielectric_model': 'fix_cavity', 'is_dielectric_function' : 'soft_sphere' } ) optimized_sheet.calc = Onetep(...) ...