.. _db tutorial: =============================================== Surface adsorption study using the ASE database =============================================== In this tutorial we will adsorb C, N and O on 7 different FCC(111) surfaces with 1, 2 and 3 layers and we will use database files to store the results. .. seealso:: The :mod:`ase.db` module documentation. |cu1o| |cu2o| |cu3o| .. |cu1o| image:: cu1o.png .. |cu2o| image:: cu2o.png .. |cu3o| image:: cu3o.png Bulk ---- First, we calculate the equilibrium bulk FCC lattice constants for the seven elements where the :mod:`EMT ` potential works well: .. literalinclude:: bulk.py .. highlight:: bash Run the :download:`bulk.py` script and look at the results:: $ python3 bulk.py $ ase db bulk.db -c +bm # show also the bulk-modulus column id|age|formula|calculator|energy| fmax|pbc|volume|charge| mass| bm 1|10s|Al |emt |-0.005|0.000|TTT|15.932| 0.000| 26.982|0.249 2| 9s|Ni |emt |-0.013|0.000|TTT|10.601| 0.000| 58.693|1.105 3| 9s|Cu |emt |-0.007|0.000|TTT|11.565| 0.000| 63.546|0.839 4| 9s|Pd |emt |-0.000|0.000|TTT|14.588| 0.000|106.420|1.118 5| 9s|Ag |emt |-0.000|0.000|TTT|16.775| 0.000|107.868|0.625 6| 9s|Pt |emt |-0.000|0.000|TTT|15.080| 0.000|195.084|1.736 7| 9s|Au |emt |-0.000|0.000|TTT|16.684| 0.000|196.967|1.085 Rows: 7 Keys: bm $ ase gui bulk.db The :file:`bulk.db` is an SQLite3_ database in a single file:: $ file bulk.db bulk.db: SQLite 3.x database .. _SQLite3: https://www.sqlite.org/index.html If you want to see what's inside you can convert the database file to a json file and open that in your text editor:: $ ase db bulk.db --insert-into bulk.json Added 0 key-value pairs (0 pairs updated) Inserted 7 rows or, you can look at a single row like this:: $ ase db bulk.db Cu -j {"1": { "calculator": "emt", "energy": -0.007036492048371201, "forces": [[0.0, 0.0, 0.0]], "key_value_pairs": {"bm": 0.8392875566787444}, ... ... } The json file format is human readable, but much less efficient to work with compared to a SQLite3 file. Adsorbates ---------- Now we do the adsorption calculations (run the :download:`ads.py` script). .. literalinclude:: ads.py We now have a new database file with 63 rows:: $ ase db ads.db -n 63 rows These 63 calculations only take a few seconds with EMT. Suppose you want to use DFT and send the calculations to a supercomputer. In that case you may want to run several calculations in different jobs on the computer. In addition, some of the jobs could time out and not finish. It's a good idea to modify the script a bit for this scenario. We add a couple of lines to the inner loop: .. highlight:: python :: for row in db1.select(): a = row.cell[0, 1] * 2 symb = row.symbols[0] for n in [1, 2, 3]: for ads in 'CNO': id = db2.reserve(layers=n, surf=symb, ads=ads) if id is not None: atoms = run(symb, a, n, ads) db2.write(atoms, layers=n, surf=symb, ads=ads) del db2[id] The :meth:`~ase.db.core.Database.reserve` method will check if there is a row with the keys ``layers=n``, ``surf=symb`` and ``ads=ads``. If there is, then the calculation will be skipped. If there is not, then an empty row with those keys-values will be written and the calculation will start. When done, the real row will be written and the empty one will be removed. This modified script can run in several jobs all running in parallel and no calculation will be done twice. .. highlight:: bash In case a calculation crashes, you will see empty rows left in the database:: $ ase db ads.db natoms=0 -c ++ id|age|user |formula|pbc|charge| mass|ads|layers|surf 17|31s|jensj| |FFF| 0.000|0.000| N| 1| Cu Rows: 1 Keys: ads, layers, surf Delete them, fix the problem and run the script again:: $ ase db ads.db natoms=0 --delete Delete 1 row? (yes/No): yes Deleted 1 row $ python ads.py # or sbatch ... $ ase db ads.db natoms=0 Rows: 0 Reference energies ------------------ Let's also calculate the energy of the clean surfaces and the isolated adsorbates (:download:`refs.py`): .. literalinclude:: refs.py :: $ python refs.py $ ase db ads.db -n 87 rows Say we want those 24 reference energies (clean surfaces and isolated adsorbates) in a :file:`refs.db` file instead of the big :file:`ads.db` file. We could change the :file:`refs.py` script and run the calculations again, but we can also manipulate the files using the ``ase db`` tool. First, we move over the clean surfaces:: $ ase db ads.db ads=clean --insert-into refs.db Added 0 key-value pairs (0 pairs updated) Inserted 21 rows $ ase db ads.db ads=clean --delete --yes Deleted 21 rows and then the three atoms (``pbc=FFF``, no periodicity):: $ ase db ads.db pbc=FFF --insert-into refs.db Added 0 key-value pairs (0 pairs updated) Inserted 3 rows $ ase db ads.db pbc=FFF --delete --yes Deleted 3 rows $ ase db ads.db -n 63 rows $ ase db refs.db -n 24 rows Analysis -------- Now we have what we need to calculate the adsorption energies and heights (:download:`ea.py`): .. literalinclude:: ea.py Here are the results for three layers of Pt:: $ python3 ea.py $ ase db ads.db Pt,layers=3 -c formula,ea,height formula| ea|height Pt3C |-3.715| 1.504 Pt3N |-5.419| 1.534 Pt3O |-4.724| 1.706 Rows: 3 Keys: ads, ea, height, layers, surf .. note:: While the EMT description of Ni, Cu, Pd, Ag, Pt, Au and Al is OK, the parameters for C, N and O are not intended for real work!