.. _dcdft tut: Calculating Delta-values ======================== In this tutorial we compare the equation-of-state (EOS) calculated for 7 FCC metals using values from :class:`~ase.calculators.emt.EMT`, WIEN2k and experiment. Each EOS is described by three parameters: * volume per atom * bulk-modulus * pressure derivative of bulk-modulus Differences between two EOS'es can be measured by a single `\Delta` value defined as: .. math:: \sqrt{\frac{\int_{V_a}^{V_b} (E_1(V) - E_2(V))^2 dV} {V_b - V_a}}, where `E_n(V)` is the energy per atom as a function of volume. The `\Delta` value can be calculated using the :func:`ase.utils.deltacodesdft.delta` function: .. autofunction:: ase.utils.deltacodesdft.delta .. seealso:: * Collection of ground-state elemental crystals: :ref:`dcdft` * Equation-of-state module: :mod:`ase.eos` We get the WIEN2k and experimental numbers from the :ref:`dcdft` ASE-collection and we calculate the EMT EOS using this script: .. literalinclude:: calculate.py And fit to a Birch-Murnaghan EOS: .. literalinclude:: fit.py Result for Pt: .. image:: Pt.png Volumes in Ang^3: .. csv-table:: :file: volume.csv Bulk moduli in GPa: .. csv-table:: :file: B.csv Pressure derivative of bulk-moduli: .. csv-table:: :file: Bp.csv Now, we can calculate `\Delta` between EMT and WIEN2k for Pt: >>> from ase.utils.deltacodesdft import delta >>> from ase.units import kJ >>> delta(15.08, 278.67 * 1e-24 * kJ, 5.31, ... 15.64, 248.71 * 1e-24 * kJ, 5.46) 0.03205389052984122 Here are all the values (in meV/atom) calculated with the script below: .. csv-table:: :file: delta.csv .. literalinclude:: tables.py