Coverage for ase / optimize / bfgs.py: 78.16%

87 statements  

« prev     ^ index     » next       coverage.py v7.13.3, created at 2026-02-04 10:20 +0000

1# fmt: off 

2 

3import warnings 

4from pathlib import Path 

5from typing import IO 

6 

7import numpy as np 

8from numpy.linalg import eigh 

9 

10from ase import Atoms 

11from ase.optimize.optimize import Optimizer, UnitCellFilter 

12 

13 

14class BFGS(Optimizer): 

15 # default parameters 

16 defaults = {**Optimizer.defaults, 'alpha': 70.0} 

17 

18 def __init__( 

19 self, 

20 atoms: Atoms, 

21 restart: str | Path | None = None, 

22 logfile: IO | str | Path | None = '-', 

23 trajectory: str | Path | None = None, 

24 append_trajectory: bool = False, 

25 maxstep: float | None = None, 

26 alpha: float | None = None, 

27 **kwargs, 

28 ): 

29 """BFGS optimizer. 

30 

31 Parameters 

32 ---------- 

33 atoms: :class:`~ase.Atoms` 

34 The Atoms object to relax. 

35 

36 restart: str | Path | None 

37 JSON file used to store hessian matrix. If set, file with 

38 such a name will be searched and hessian matrix stored will 

39 be used, if the file exists. 

40 

41 trajectory: str or Path 

42 Trajectory file used to store optimisation path. 

43 

44 logfile: file object, Path, or str 

45 If *logfile* is a string, a file with that name will be opened. 

46 Use '-' for stdout. 

47 

48 maxstep: float 

49 Used to set the maximum distance an atom can move per 

50 iteration (default value is 0.2 Å). 

51 

52 alpha: float 

53 Initial guess for the Hessian (curvature of energy surface). A 

54 conservative value of 70.0 is the default, but number of needed 

55 steps to converge might be less if a lower value is used. However, 

56 a lower value also means risk of instability. 

57 

58 kwargs : dict, optional 

59 Extra arguments passed to 

60 :class:`~ase.optimize.optimize.Optimizer`. 

61 

62 """ 

63 if maxstep is None: 

64 self.maxstep = self.defaults['maxstep'] 

65 else: 

66 self.maxstep = maxstep 

67 

68 if self.maxstep > 1.0: 

69 warnings.warn('You are using a *very* large value for ' 

70 'the maximum step size: %.1f Å' % self.maxstep) 

71 

72 self.alpha = alpha 

73 if self.alpha is None: 

74 self.alpha = self.defaults['alpha'] 

75 super().__init__( 

76 atoms=atoms, restart=restart, 

77 logfile=logfile, trajectory=trajectory, 

78 append_trajectory=append_trajectory, 

79 **kwargs) 

80 

81 def initialize(self): 

82 # initial hessian 

83 self.H0 = np.eye(self.optimizable.ndofs()) * self.alpha 

84 

85 self.H = None 

86 self.pos0 = None 

87 self.forces0 = None 

88 

89 def read(self): 

90 file = self.load() 

91 if len(file) == 5: 

92 (self.H, self.pos0, self.forces0, self.maxstep, 

93 self.atoms.orig_cell) = file 

94 else: 

95 self.H, self.pos0, self.forces0, self.maxstep = file 

96 

97 def step(self, gradient=None): 

98 gradient = self._get_gradient(gradient) 

99 optimizable = self.optimizable 

100 

101 pos = optimizable.get_x() 

102 dpos, steplengths = self.prepare_step(pos, gradient) 

103 dpos = self.determine_step(dpos, steplengths) 

104 optimizable.set_x(pos + dpos) 

105 if isinstance(self.atoms, UnitCellFilter): 

106 self.dump((self.H, self.pos0, self.forces0, self.maxstep, 

107 self.atoms.orig_cell)) 

108 else: 

109 self.dump((self.H, self.pos0, self.forces0, self.maxstep)) 

110 

111 def prepare_step(self, pos, gradient): 

112 pos = pos.ravel() 

113 gradient = gradient.ravel() 

114 self.update(pos, -gradient, self.pos0, self.forces0) 

115 omega, V = eigh(self.H) 

116 

117 # FUTURE: Log this properly 

118 # # check for negative eigenvalues of the hessian 

119 # if any(omega < 0): 

120 # n_negative = len(omega[omega < 0]) 

121 # msg = '\n** BFGS Hessian has {} negative eigenvalues.'.format( 

122 # n_negative 

123 # ) 

124 # print(msg, flush=True) 

125 # if self.logfile is not None: 

126 # self.logfile.write(msg) 

127 # self.logfile.flush() 

128 

129 dpos = np.dot(V, -np.dot(gradient, V) / np.fabs(omega)) 

130 # XXX Here we are calling gradient_norm() on some positions. 

131 # Should there be a general norm concept 

132 steplengths = self.optimizable.gradient_norm(dpos) 

133 self.pos0 = pos 

134 self.forces0 = -gradient.copy() 

135 return dpos, steplengths 

136 

137 def determine_step(self, dpos, steplengths): 

138 """Determine step to take according to maxstep 

139 

140 Normalize all steps as the largest step. This way 

141 we still move along the direction. 

142 """ 

143 maxsteplength = np.max(steplengths) 

144 if maxsteplength >= self.maxstep: 

145 scale = self.maxstep / maxsteplength 

146 # FUTURE: Log this properly 

147 # msg = '\n** scale step by {:.3f} to be shorter than {}'.format( 

148 # scale, self.maxstep 

149 # ) 

150 # print(msg, flush=True) 

151 

152 dpos *= scale 

153 return dpos 

154 

155 def update(self, pos, forces, pos0, forces0): 

156 if self.H is None: 

157 self.H = self.H0 

158 return 

159 dpos = pos - pos0 

160 

161 if np.abs(dpos).max() < 1e-7: 

162 # Same configuration again (maybe a restart): 

163 return 

164 

165 dforces = forces - forces0 

166 a = np.dot(dpos, dforces) 

167 dg = np.dot(self.H, dpos) 

168 b = np.dot(dpos, dg) 

169 self.H -= np.outer(dforces, dforces) / a + np.outer(dg, dg) / b 

170 

171 def replay_trajectory(self, traj): 

172 """Initialize hessian from old trajectory.""" 

173 if isinstance(traj, str): 

174 from ase.io.trajectory import Trajectory 

175 traj = Trajectory(traj, 'r') 

176 self.H = None 

177 atoms = traj[0] 

178 pos0 = atoms.get_positions().ravel() 

179 forces0 = atoms.get_forces().ravel() 

180 for atoms in traj: 

181 pos = atoms.get_positions().ravel() 

182 forces = atoms.get_forces().ravel() 

183 self.update(pos, forces, pos0, forces0) 

184 pos0 = pos 

185 forces0 = forces 

186 

187 self.pos0 = pos0 

188 self.forces0 = forces0 

189 

190 

191class oldBFGS(BFGS): 

192 def determine_step(self, dpos, steplengths): 

193 """Old BFGS behaviour for scaling step lengths 

194 

195 This keeps the behaviour of truncating individual steps. Some might 

196 depend of this as some absurd kind of stimulated annealing to find the 

197 global minimum. 

198 """ 

199 dpos /= np.maximum(steplengths / self.maxstep, 1.0).reshape(-1, 1) 

200 return dpos