Coverage for /builds/ase/ase/ase/optimize/cellawarebfgs.py: 100.00%
68 statements
« prev ^ index » next coverage.py v7.5.3, created at 2025-08-02 00:12 +0000
« prev ^ index » next coverage.py v7.5.3, created at 2025-08-02 00:12 +0000
1# fmt: off
3import time
4from typing import IO, Optional, Union
6import numpy as np
8from ase import Atoms
9from ase.geometry import cell_to_cellpar
10from ase.optimize import BFGS
11from ase.optimize.optimize import Dynamics
12from ase.units import GPa
15def calculate_isotropic_elasticity_tensor(bulk_modulus, poisson_ratio,
16 suppress_rotation=0):
17 """
18 Parameters:
19 bulk_modulus Bulk Modulus of the isotropic system used to set up the
20 Hessian (in ASE units (eV/Å^3)).
22 poisson_ratio Poisson ratio of the isotropic system used to set up the
23 initial Hessian (unitless, between -1 and 0.5).
25 suppress_rotation The rank-2 matrix C_ijkl.reshape((9,9)) has by
26 default 6 non-zero eigenvalues, because energy is
27 invariant to orthonormal rotations of the cell
28 vector. This serves as a bad initial Hessian due to 3
29 zero eigenvalues. Suppress rotation sets a value for
30 those zero eigenvalues.
32 Returns C_ijkl
33 """
35 # https://scienceworld.wolfram.com/physics/LameConstants.html
36 _lambda = 3 * bulk_modulus * poisson_ratio / (1 + 1 * poisson_ratio)
37 _mu = _lambda * (1 - 2 * poisson_ratio) / (2 * poisson_ratio)
39 # https://en.wikipedia.org/wiki/Elasticity_tensor
40 g_ij = np.eye(3)
42 # Construct 4th rank Elasticity tensor for isotropic systems
43 C_ijkl = _lambda * np.einsum('ij,kl->ijkl', g_ij, g_ij)
44 C_ijkl += _mu * (np.einsum('ik,jl->ijkl', g_ij, g_ij) +
45 np.einsum('il,kj->ijkl', g_ij, g_ij))
47 # Supplement the tensor with suppression of pure rotations that are right
48 # now 0 eigenvalues.
49 # Loop over all basis vectors of skew symmetric real matrix
50 for i, j in ((0, 1), (0, 2), (1, 2)):
51 Q = np.zeros((3, 3))
52 Q[i, j], Q[j, i] = 1, -1
53 C_ijkl += (np.einsum('ij,kl->ijkl', Q, Q)
54 * suppress_rotation / 2)
56 return C_ijkl
59class CellAwareBFGS(BFGS):
60 def __init__(
61 self,
62 atoms: Atoms,
63 restart: Optional[str] = None,
64 logfile: Union[IO, str] = '-',
65 trajectory: Optional[str] = None,
66 append_trajectory: bool = False,
67 maxstep: Optional[float] = None,
68 bulk_modulus: Optional[float] = 145 * GPa,
69 poisson_ratio: Optional[float] = 0.3,
70 alpha: Optional[float] = None,
71 long_output: Optional[bool] = False,
72 **kwargs,
73 ):
74 self.bulk_modulus = bulk_modulus
75 self.poisson_ratio = poisson_ratio
76 self.long_output = long_output
77 BFGS.__init__(self, atoms=atoms, restart=restart, logfile=logfile,
78 trajectory=trajectory, maxstep=maxstep,
79 alpha=alpha, append_trajectory=append_trajectory,
80 **kwargs)
81 assert not isinstance(atoms, Atoms)
82 if hasattr(atoms, 'exp_cell_factor'):
83 assert atoms.exp_cell_factor == 1.0
85 def initialize(self):
86 BFGS.initialize(self)
87 C_ijkl = calculate_isotropic_elasticity_tensor(
88 self.bulk_modulus,
89 self.poisson_ratio,
90 suppress_rotation=self.alpha)
91 cell_H = self.H0[-9:, -9:]
92 ind = np.where(self.atoms.mask.ravel() != 0)[0]
93 cell_H[np.ix_(ind, ind)] = C_ijkl.reshape((9, 9))[
94 np.ix_(ind, ind)] * self.atoms.atoms.cell.volume
96 def converged(self, gradient):
97 # XXX currently ignoring gradient
98 forces = self.atoms.atoms.get_forces()
99 stress = self.atoms.atoms.get_stress(voigt=False) * self.atoms.mask
100 return np.max(np.sum(forces**2, axis=1))**0.5 < self.fmax and \
101 np.max(np.abs(stress)) < self.smax
103 def run(self, fmax=0.05, smax=0.005, steps=None):
104 """ call Dynamics.run and keep track of fmax"""
105 self.fmax = fmax
106 self.smax = smax
107 if steps is not None:
108 return Dynamics.run(self, steps=steps)
109 return Dynamics.run(self)
111 def log(self, gradient):
112 # XXX ignoring gradient
113 forces = self.atoms.atoms.get_forces()
114 fmax = (forces ** 2).sum(axis=1).max() ** 0.5
115 e = self.optimizable.get_value()
116 T = time.localtime()
117 smax = abs(self.atoms.atoms.get_stress(voigt=False) *
118 self.atoms.mask).max()
119 volume = self.atoms.atoms.cell.volume
120 if self.logfile is not None:
121 name = self.__class__.__name__
122 if self.nsteps == 0:
123 args = (" " * len(name),
124 "Step", "Time", "Energy", "fmax", "smax", "volume")
125 msg = "\n%s %4s %8s %15s %15s %15s %15s" % args
126 if self.long_output:
127 msg += ("%8s %8s %8s %8s %8s %8s" %
128 ('A', 'B', 'C', 'α', 'β', 'γ'))
129 msg += '\n'
130 self.logfile.write(msg)
132 ast = ''
133 args = (name, self.nsteps, T[3], T[4], T[5], e, ast, fmax, smax,
134 volume)
135 msg = ("%s: %3d %02d:%02d:%02d %15.6f%1s %15.6f %15.6f %15.6f" %
136 args)
137 if self.long_output:
138 msg += ("%8.3f %8.3f %8.3f %8.3f %8.3f %8.3f" %
139 tuple(cell_to_cellpar(self.atoms.atoms.cell)))
140 msg += '\n'
141 self.logfile.write(msg)
143 self.logfile.flush()