Coverage for /builds/ase/ase/ase/gui/view.py: 68.18%
506 statements
« prev ^ index » next coverage.py v7.5.3, created at 2025-08-02 00:12 +0000
« prev ^ index » next coverage.py v7.5.3, created at 2025-08-02 00:12 +0000
1# fmt: off
3from math import cos, sin, sqrt
4from os.path import basename
6import numpy as np
8from ase.calculators.calculator import PropertyNotImplementedError
9from ase.data import atomic_numbers
10from ase.data.colors import jmol_colors
11from ase.geometry import complete_cell
12from ase.gui.colors import ColorWindow
13from ase.gui.i18n import ngettext
14from ase.gui.render import Render
15from ase.gui.repeat import Repeat
16from ase.gui.rotate import Rotate
17from ase.gui.utils import get_magmoms
18from ase.utils import rotate
20GREEN = '#74DF00'
21PURPLE = '#AC58FA'
22BLACKISH = '#151515'
25def get_cell_coordinates(cell, shifted=False):
26 """Get start and end points of lines segments used to draw cell."""
27 nn = []
28 for c in range(3):
29 v = cell[c]
30 d = sqrt(np.dot(v, v))
31 if d < 1e-12:
32 n = 0
33 else:
34 n = max(2, int(d / 0.3))
35 nn.append(n)
36 B1 = np.zeros((2, 2, sum(nn), 3))
37 B2 = np.zeros((2, 2, sum(nn), 3))
38 n1 = 0
39 for c, n in enumerate(nn):
40 n2 = n1 + n
41 h = 1.0 / (2 * n - 1)
42 R = np.arange(n) * (2 * h)
44 for i, j in [(0, 0), (0, 1), (1, 0), (1, 1)]:
45 B1[i, j, n1:n2, c] = R
46 B1[i, j, n1:n2, (c + 1) % 3] = i
47 B1[i, j, n1:n2, (c + 2) % 3] = j
48 B2[:, :, n1:n2] = B1[:, :, n1:n2]
49 B2[:, :, n1:n2, c] += h
50 n1 = n2
51 B1.shape = (-1, 3)
52 B2.shape = (-1, 3)
53 if shifted:
54 B1 -= 0.5
55 B2 -= 0.5
56 return B1, B2
59def get_bonds(atoms, covalent_radii):
60 from ase.neighborlist import PrimitiveNeighborList
62 nl = PrimitiveNeighborList(
63 covalent_radii * 1.5,
64 skin=0.0,
65 self_interaction=False,
66 bothways=False,
67 )
68 nl.update(atoms.pbc, atoms.get_cell(complete=True), atoms.positions)
69 number_of_neighbors = sum(indices.size for indices in nl.neighbors)
70 number_of_pbc_neighbors = sum(
71 offsets.any(axis=1).sum() for offsets in nl.displacements
72 ) # sum up all neighbors that have non-zero supercell offsets
73 nbonds = number_of_neighbors + number_of_pbc_neighbors
75 bonds = np.empty((nbonds, 5), int)
76 if nbonds == 0:
77 return bonds
79 n1 = 0
80 for a in range(len(atoms)):
81 indices, offsets = nl.get_neighbors(a)
82 n2 = n1 + len(indices)
83 bonds[n1:n2, 0] = a
84 bonds[n1:n2, 1] = indices
85 bonds[n1:n2, 2:] = offsets
86 n1 = n2
88 i = bonds[:n2, 2:].any(1)
89 pbcbonds = bonds[:n2][i]
90 bonds[n2:, 0] = pbcbonds[:, 1]
91 bonds[n2:, 1] = pbcbonds[:, 0]
92 bonds[n2:, 2:] = -pbcbonds[:, 2:]
93 return bonds
96class View:
97 def __init__(self, rotations):
98 self.colormode = 'jmol' # The default colors
99 self.axes = rotate(rotations)
100 self.configured = False
101 self.frame = None
103 # XXX
104 self.colormode = 'jmol'
105 self.colors = {
106 i: ('#{:02X}{:02X}{:02X}'.format(*(int(x * 255) for x in rgb)))
107 for i, rgb in enumerate(jmol_colors)
108 }
109 # scaling factors for vectors
110 self.force_vector_scale = self.config['force_vector_scale']
111 self.velocity_vector_scale = self.config['velocity_vector_scale']
112 self.magmom_vector_scale = self.config['magmom_vector_scale']
114 # buttons
115 self.b1 = 1 # left
116 self.b3 = 3 # right
117 if self.config['swap_mouse']:
118 self.b1 = 3
119 self.b3 = 1
121 @property
122 def atoms(self):
123 return self.images[self.frame]
125 def set_frame(self, frame=None, focus=False):
126 if frame is None:
127 frame = self.frame
128 assert frame < len(self.images)
129 self.frame = frame
130 self.set_atoms(self.images[frame])
132 fname = self.images.filenames[frame]
133 if fname is None:
134 header = 'ase.gui'
135 else:
136 # fname is actually not necessarily the filename but may
137 # contain indexing like filename@0
138 header = basename(fname)
140 images_loaded_text = ngettext(
141 'one image loaded',
142 '{} images loaded',
143 len(self.images)
144 ).format(len(self.images))
146 self.window.title = f'{header} — {images_loaded_text}'
148 if focus:
149 self.focus()
150 else:
151 self.draw()
153 def get_bonds(self, atoms):
154 # this method exists rather than just using the standalone function
155 # so that it can be overridden by external libraries
156 return get_bonds(atoms, self.get_covalent_radii(atoms))
158 def set_atoms(self, atoms):
159 natoms = len(atoms)
161 if self.showing_cell():
162 B1, B2 = get_cell_coordinates(atoms.cell,
163 self.config['shift_cell'])
164 else:
165 B1 = B2 = np.zeros((0, 3))
167 if self.showing_bonds():
168 atomscopy = atoms.copy()
169 atomscopy.cell *= self.images.repeat[:, np.newaxis]
170 bonds = self.get_bonds(atomscopy)
171 else:
172 bonds = np.empty((0, 5), int)
174 # X is all atomic coordinates, and starting points of vectors
175 # like bonds and cell segments.
176 # The reason to have them all in one big list is that we like to
177 # eventually rotate/sort it by Z-order when rendering.
179 # Also B are the end points of line segments.
181 self.X = np.empty((natoms + len(B1) + len(bonds), 3))
182 self.X_pos = self.X[:natoms]
183 self.X_pos[:] = atoms.positions
184 self.X_cell = self.X[natoms:natoms + len(B1)]
185 self.X_bonds = self.X[natoms + len(B1):]
187 cell = atoms.cell
188 ncellparts = len(B1)
189 nbonds = len(bonds)
191 self.X_cell[:] = np.dot(B1, cell)
192 self.B = np.empty((ncellparts + nbonds, 3))
193 self.B[:ncellparts] = np.dot(B2, cell)
195 if nbonds > 0:
196 P = atoms.positions
197 Af = self.images.repeat[:, np.newaxis] * cell
198 a = P[bonds[:, 0]]
199 b = P[bonds[:, 1]] + np.dot(bonds[:, 2:], Af) - a
200 d = (b**2).sum(1)**0.5
201 r = 0.65 * self.get_covalent_radii()
202 x0 = (r[bonds[:, 0]] / d).reshape((-1, 1))
203 x1 = (r[bonds[:, 1]] / d).reshape((-1, 1))
204 self.X_bonds[:] = a + b * x0
205 b *= 1.0 - x0 - x1
206 b[bonds[:, 2:].any(1)] *= 0.5
207 self.B[ncellparts:] = self.X_bonds + b
209 self.obs.set_atoms.notify()
211 def showing_bonds(self):
212 return self.window['toggle-show-bonds']
214 def showing_cell(self):
215 return self.window['toggle-show-unit-cell']
217 def toggle_show_unit_cell(self, key=None):
218 self.set_frame()
220 def get_labels(self):
221 index = self.window['show-labels']
222 if index == 0:
223 return None
225 if index == 1:
226 return list(range(len(self.atoms)))
228 if index == 2:
229 return list(get_magmoms(self.atoms))
231 if index == 4:
232 Q = self.atoms.get_initial_charges()
233 return [f'{q:.4g}' for q in Q]
235 return self.atoms.symbols
237 def show_labels(self):
238 self.draw()
240 def toggle_show_axes(self, key=None):
241 self.draw()
243 def toggle_show_bonds(self, key=None):
244 self.set_frame()
246 def toggle_show_velocities(self, key=None):
247 self.draw()
249 def get_forces(self):
250 if self.atoms.calc is not None:
251 try:
252 return self.atoms.get_forces()
253 except PropertyNotImplementedError:
254 pass
255 return np.zeros((len(self.atoms), 3))
257 def toggle_show_forces(self, key=None):
258 self.draw()
260 def toggle_show_magmoms(self, key=None):
261 self.draw()
263 def hide_selected(self):
264 self.images.visible[self.images.selected] = False
265 self.draw()
267 def show_selected(self):
268 self.images.visible[self.images.selected] = True
269 self.draw()
271 def repeat_window(self, key=None):
272 return Repeat(self)
274 def rotate_window(self):
275 return Rotate(self)
277 def colors_window(self, key=None):
278 win = ColorWindow(self)
279 self.obs.new_atoms.register(win.notify_atoms_changed)
280 return win
282 def focus(self, x=None):
283 cell = (self.window['toggle-show-unit-cell'] and
284 self.images[0].cell.any())
285 if (len(self.atoms) == 0 and not cell):
286 self.scale = 20.0
287 self.center = np.zeros(3)
288 self.draw()
289 return
291 # Get the min and max point of the projected atom positions
292 # including the covalent_radii used for drawing the atoms
293 P = np.dot(self.X, self.axes)
294 n = len(self.atoms)
295 covalent_radii = self.get_covalent_radii()
296 P[:n] -= covalent_radii[:, None]
297 P1 = P.min(0)
298 P[:n] += 2 * covalent_radii[:, None]
299 P2 = P.max(0)
300 self.center = np.dot(self.axes, (P1 + P2) / 2)
301 self.center += self.atoms.get_celldisp().reshape((3,)) / 2
302 # Add 30% of whitespace on each side of the atoms
303 S = 1.3 * (P2 - P1)
304 w, h = self.window.size
305 if S[0] * h < S[1] * w:
306 self.scale = h / S[1]
307 elif S[0] > 0.0001:
308 self.scale = w / S[0]
309 else:
310 self.scale = 1.0
311 self.draw()
313 def reset_view(self, menuitem):
314 self.axes = rotate('0.0x,0.0y,0.0z')
315 self.set_frame()
316 self.focus(self)
318 def set_view(self, key):
319 if key == 'Z':
320 self.axes = rotate('0.0x,0.0y,0.0z')
321 elif key == 'X':
322 self.axes = rotate('-90.0x,-90.0y,0.0z')
323 elif key == 'Y':
324 self.axes = rotate('90.0x,0.0y,90.0z')
325 elif key == 'Shift+Z':
326 self.axes = rotate('180.0x,0.0y,90.0z')
327 elif key == 'Shift+X':
328 self.axes = rotate('0.0x,90.0y,0.0z')
329 elif key == 'Shift+Y':
330 self.axes = rotate('-90.0x,0.0y,0.0z')
331 else:
332 if key == 'I':
333 i, j = 1, 2
334 elif key == 'J':
335 i, j = 2, 0
336 elif key == 'K':
337 i, j = 0, 1
338 elif key == 'Shift+I':
339 i, j = 2, 1
340 elif key == 'Shift+J':
341 i, j = 0, 2
342 elif key == 'Shift+K':
343 i, j = 1, 0
345 A = complete_cell(self.atoms.cell)
346 x1 = A[i]
347 x2 = A[j]
349 norm = np.linalg.norm
351 x1 = x1 / norm(x1)
352 x2 = x2 - x1 * np.dot(x1, x2)
353 x2 /= norm(x2)
354 x3 = np.cross(x1, x2)
356 self.axes = np.array([x1, x2, x3]).T
358 self.set_frame()
360 def get_colors(self, rgb=False):
361 if rgb:
362 return [tuple(int(_rgb[i:i + 2], 16) / 255 for i in range(1, 7, 2))
363 for _rgb in self.get_colors()]
365 if self.colormode == 'jmol':
366 return [self.colors.get(Z, BLACKISH) for Z in self.atoms.numbers]
368 if self.colormode == 'neighbors':
369 return [self.colors.get(Z, BLACKISH)
370 for Z in self.get_color_scalars()]
372 colorscale, cmin, cmax = self.colormode_data
373 N = len(colorscale)
374 colorswhite = colorscale + ['#ffffff']
375 if cmin == cmax:
376 indices = [N // 2] * len(self.atoms)
377 else:
378 scalars = np.ma.array(self.get_color_scalars())
379 indices = np.clip(((scalars - cmin) / (cmax - cmin) * N +
380 0.5).astype(int),
381 0, N - 1).filled(N)
382 return [colorswhite[i] for i in indices]
384 def get_color_scalars(self, frame=None):
385 if self.colormode == 'tag':
386 return self.atoms.get_tags()
387 if self.colormode == 'force':
388 f = (self.get_forces()**2).sum(1)**0.5
389 return f * self.images.get_dynamic(self.atoms)
390 elif self.colormode == 'velocity':
391 return (self.atoms.get_velocities()**2).sum(1)**0.5
392 elif self.colormode == 'initial charge':
393 return self.atoms.get_initial_charges()
394 elif self.colormode == 'magmom':
395 return get_magmoms(self.atoms)
396 elif self.colormode == 'neighbors':
397 from ase.neighborlist import NeighborList
398 n = len(self.atoms)
399 nl = NeighborList(self.get_covalent_radii(self.atoms) * 1.5,
400 skin=0, self_interaction=False, bothways=True)
401 nl.update(self.atoms)
402 return [len(nl.get_neighbors(i)[0]) for i in range(n)]
403 else:
404 scalars = np.array(self.atoms.get_array(self.colormode),
405 dtype=float)
406 return np.ma.array(scalars, mask=np.isnan(scalars))
408 def get_covalent_radii(self, atoms=None):
409 if atoms is None:
410 atoms = self.atoms
411 return self.images.get_radii(atoms)
413 def draw(self, status=True):
414 self.window.clear()
415 axes = self.scale * self.axes * (1, -1, 1)
416 offset = np.dot(self.center, axes)
417 offset[:2] -= 0.5 * self.window.size
418 X = np.dot(self.X, axes) - offset
419 n = len(self.atoms)
421 # The indices enumerate drawable objects in z order:
422 self.indices = X[:, 2].argsort()
423 r = self.get_covalent_radii() * self.scale
424 if self.window['toggle-show-bonds']:
425 r *= 0.65
426 P = self.P = X[:n, :2]
427 A = (P - r[:, None]).round().astype(int)
428 X1 = X[n:, :2].round().astype(int)
429 X2 = (np.dot(self.B, axes) - offset).round().astype(int)
430 disp = (np.dot(self.atoms.get_celldisp().reshape((3,)),
431 axes)).round().astype(int)
432 d = (2 * r).round().astype(int)
434 vector_arrays = []
435 if self.window['toggle-show-velocities']:
436 # Scale ugly?
437 v = self.atoms.get_velocities()
438 if v is not None:
439 vector_arrays.append(v * 10.0 * self.velocity_vector_scale)
440 if self.window['toggle-show-forces']:
441 f = self.get_forces()
442 vector_arrays.append(f * self.force_vector_scale)
444 if self.window['toggle-show-magmoms']:
445 magmom = get_magmoms(self.atoms)
446 # Turn this into a 3D vector if it is a scalar
447 magmom_vecs = []
448 for i in range(len(magmom)):
449 if isinstance(magmom[i], (int, float)):
450 magmom_vecs.append(np.array([0, 0, magmom[i]]))
451 elif isinstance(magmom[i], np.ndarray) and len(magmom[i]) == 3:
452 magmom_vecs.append(magmom[i])
453 else:
454 raise TypeError('Magmom is not a 3-component vector '
455 'or a scalar')
456 magmom_vecs = np.array(magmom_vecs)
457 vector_arrays.append(magmom_vecs * 0.5 * self.magmom_vector_scale)
459 for array in vector_arrays:
460 array[:] = np.dot(array, axes) + X[:n]
462 colors = self.get_colors()
463 circle = self.window.circle
464 arc = self.window.arc
465 line = self.window.line
466 constrained = ~self.images.get_dynamic(self.atoms)
468 selected = self.images.selected
469 visible = self.images.visible
470 ncell = len(self.X_cell)
471 bond_linewidth = self.scale * 0.15
473 labels = self.get_labels()
475 if self.arrowkey_mode == self.ARROWKEY_MOVE:
476 movecolor = GREEN
477 elif self.arrowkey_mode == self.ARROWKEY_ROTATE:
478 movecolor = PURPLE
480 for a in self.indices:
481 if a < n:
482 ra = d[a]
483 if visible[a]:
484 try:
485 kinds = self.atoms.arrays['spacegroup_kinds']
486 site_occ = self.atoms.info['occupancy'][str(kinds[a])]
487 # first an empty circle if a site is not fully occupied
488 if (np.sum([v for v in site_occ.values()])) < 1.0:
489 fill = '#ffffff'
490 circle(fill, selected[a],
491 A[a, 0], A[a, 1],
492 A[a, 0] + ra, A[a, 1] + ra)
493 start = 0
494 # start with the dominant species
495 for sym, occ in sorted(site_occ.items(),
496 key=lambda x: x[1],
497 reverse=True):
498 if np.round(occ, decimals=4) == 1.0:
499 circle(colors[a], selected[a],
500 A[a, 0], A[a, 1],
501 A[a, 0] + ra, A[a, 1] + ra)
502 else:
503 # jmol colors for the moment
504 extent = 360. * occ
505 arc(self.colors[atomic_numbers[sym]],
506 selected[a],
507 start, extent,
508 A[a, 0], A[a, 1],
509 A[a, 0] + ra, A[a, 1] + ra)
510 start += extent
511 except KeyError:
512 # legacy behavior
513 # Draw the atoms
514 if (self.moving and a < len(self.move_atoms_mask)
515 and self.move_atoms_mask[a]):
516 circle(movecolor, False,
517 A[a, 0] - 4, A[a, 1] - 4,
518 A[a, 0] + ra + 4, A[a, 1] + ra + 4)
520 circle(colors[a], selected[a],
521 A[a, 0], A[a, 1], A[a, 0] + ra, A[a, 1] + ra)
523 # Draw labels on the atoms
524 if labels is not None:
525 self.window.text(A[a, 0] + ra / 2,
526 A[a, 1] + ra / 2,
527 str(labels[a]))
529 # Draw cross on constrained atoms
530 if constrained[a]:
531 R1 = int(0.14644 * ra)
532 R2 = int(0.85355 * ra)
533 line((A[a, 0] + R1, A[a, 1] + R1,
534 A[a, 0] + R2, A[a, 1] + R2))
535 line((A[a, 0] + R2, A[a, 1] + R1,
536 A[a, 0] + R1, A[a, 1] + R2))
538 # Draw velocities and/or forces
539 for v in vector_arrays:
540 assert not np.isnan(v).any()
541 self.arrow((X[a, 0], X[a, 1], v[a, 0], v[a, 1]),
542 width=2)
543 else:
544 # Draw unit cell and/or bonds:
545 a -= n
546 if a < ncell:
547 line((X1[a, 0] + disp[0], X1[a, 1] + disp[1],
548 X2[a, 0] + disp[0], X2[a, 1] + disp[1]))
549 else:
550 line((X1[a, 0], X1[a, 1],
551 X2[a, 0], X2[a, 1]),
552 width=bond_linewidth)
554 if self.window['toggle-show-axes']:
555 self.draw_axes()
557 if len(self.images) > 1:
558 self.draw_frame_number()
560 self.window.update()
562 if status:
563 self.status.status(self.atoms)
565 # Currently we change the atoms all over the place willy-nilly
566 # and then call draw(). For which reason we abuse draw() to notify
567 # the observers about general changes.
568 #
569 # We should refactor so change_atoms is only emitted
570 # when when atoms actually change, and maybe have a separate signal
571 # to listen to e.g. changes of view.
572 self.obs.change_atoms.notify()
574 def arrow(self, coords, width):
575 line = self.window.line
576 begin = np.array((coords[0], coords[1]))
577 end = np.array((coords[2], coords[3]))
578 line(coords, width)
580 vec = end - begin
581 length = np.sqrt((vec[:2]**2).sum())
582 length = min(length, 0.3 * self.scale)
584 angle = np.arctan2(end[1] - begin[1], end[0] - begin[0]) + np.pi
585 x1 = (end[0] + length * np.cos(angle - 0.3)).round().astype(int)
586 y1 = (end[1] + length * np.sin(angle - 0.3)).round().astype(int)
587 x2 = (end[0] + length * np.cos(angle + 0.3)).round().astype(int)
588 y2 = (end[1] + length * np.sin(angle + 0.3)).round().astype(int)
589 line((x1, y1, end[0], end[1]), width)
590 line((x2, y2, end[0], end[1]), width)
592 def draw_axes(self):
593 axes_length = 15
595 rgb = ['red', 'green', 'blue']
597 for i in self.axes[:, 2].argsort():
598 a = 20
599 b = self.window.size[1] - 20
600 c = int(self.axes[i][0] * axes_length + a)
601 d = int(-self.axes[i][1] * axes_length + b)
602 self.window.line((a, b, c, d))
603 self.window.text(c, d, 'XYZ'[i], color=rgb[i])
605 def draw_frame_number(self):
606 x, y = self.window.size
607 self.window.text(x, y, '{}'.format(self.frame),
608 anchor='SE')
610 def release(self, event):
611 if event.button in [4, 5]:
612 self.scroll_event(event)
613 return
615 if event.button != self.b1:
616 return
618 selected = self.images.selected
619 selected_ordered = self.images.selected_ordered
621 if event.time < self.t0 + 200: # 200 ms
622 d = self.P - self.xy
623 r = self.get_covalent_radii()
624 hit = np.less((d**2).sum(1), (self.scale * r)**2)
625 for a in self.indices[::-1]:
626 if a < len(self.atoms) and hit[a]:
627 if event.modifier == 'ctrl':
628 selected[a] = not selected[a]
629 if selected[a]:
630 selected_ordered += [a]
631 elif len(selected_ordered) > 0:
632 if selected_ordered[-1] == a:
633 selected_ordered = selected_ordered[:-1]
634 else:
635 selected_ordered = []
636 else:
637 selected[:] = False
638 selected[a] = True
639 selected_ordered = [a]
640 break
641 else:
642 selected[:] = False
643 selected_ordered = []
644 self.draw()
645 else:
646 A = (event.x, event.y)
647 C1 = np.minimum(A, self.xy)
648 C2 = np.maximum(A, self.xy)
649 hit = np.logical_and(self.P > C1, self.P < C2)
650 indices = np.compress(hit.prod(1), np.arange(len(hit)))
651 if event.modifier != 'ctrl':
652 selected[:] = False
653 selected[indices] = True
654 if (len(indices) == 1 and
655 indices[0] not in self.images.selected_ordered):
656 selected_ordered += [indices[0]]
657 elif len(indices) > 1:
658 selected_ordered = []
659 self.draw()
661 # XXX check bounds
662 natoms = len(self.atoms)
663 indices = np.arange(natoms)[self.images.selected[:natoms]]
664 if len(indices) != len(selected_ordered):
665 selected_ordered = []
666 self.images.selected_ordered = selected_ordered
668 def press(self, event):
669 self.button = event.button
670 self.xy = (event.x, event.y)
671 self.t0 = event.time
672 self.axes0 = self.axes
673 self.center0 = self.center
675 def move(self, event):
676 x = event.x
677 y = event.y
678 x0, y0 = self.xy
679 if self.button == self.b1:
680 x0 = int(round(x0))
681 y0 = int(round(y0))
682 self.draw()
683 self.window.canvas.create_rectangle((x, y, x0, y0))
684 return
686 if event.modifier == 'shift':
687 self.center = (self.center0 -
688 np.dot(self.axes, (x - x0, y0 - y, 0)) / self.scale)
689 else:
690 # Snap mode: the a-b angle and t should multipla of 15 degrees ???
691 a = x - x0
692 b = y0 - y
693 t = sqrt(a * a + b * b)
694 if t > 0:
695 a /= t
696 b /= t
697 else:
698 a = 1.0
699 b = 0.0
700 c = cos(0.01 * t)
701 s = -sin(0.01 * t)
702 rotation = np.array([(c * a * a + b * b, (c - 1) * b * a, s * a),
703 ((c - 1) * a * b, c * b * b + a * a, s * b),
704 (-s * a, -s * b, c)])
705 self.axes = np.dot(self.axes0, rotation)
706 if len(self.atoms) > 0:
707 com = self.X_pos.mean(0)
708 else:
709 com = self.atoms.cell.mean(0)
710 self.center = com - np.dot(com - self.center0,
711 np.dot(self.axes0, self.axes.T))
712 self.draw(status=False)
714 def render_window(self):
715 return Render(self)
717 def resize(self, event):
718 w, h = self.window.size
719 self.scale *= (event.width * event.height / (w * h))**0.5
720 self.window.size[:] = [event.width, event.height]
721 self.draw()