Coverage for ase / md / contour_exploration.py: 96.27%

161 statements  

« prev     ^ index     » next       coverage.py v7.13.3, created at 2026-02-04 10:20 +0000

1# fmt: off 

2 

3from typing import IO, Optional, Union 

4 

5import numpy as np 

6 

7from ase import Atoms 

8from ase.optimize.optimize import Dynamics 

9 

10 

11def subtract_projection(a, b): 

12 '''returns new vector that removes vector a's projection vector b. Is 

13 also equivalent to the vector rejection.''' 

14 aout = a - np.vdot(a, b) / np.vdot(b, b) * b 

15 return aout 

16 

17 

18def normalize(a): 

19 '''Makes a unit vector out of a vector''' 

20 return a / np.linalg.norm(a) 

21 

22 

23class ContourExploration(Dynamics): 

24 

25 def __init__( 

26 self, 

27 atoms: Atoms, 

28 maxstep: float = 0.5, 

29 parallel_drift: float = 0.1, 

30 energy_target: Optional[float] = None, 

31 angle_limit: Optional[float] = 20.0, 

32 potentiostat_step_scale: Optional[float] = None, 

33 remove_translation: bool = False, 

34 use_frenet_serret: bool = True, 

35 initialization_step_scale: float = 1e-2, 

36 use_target_shift: bool = True, 

37 target_shift_previous_steps: int = 10, 

38 use_tangent_curvature: bool = False, 

39 rng=np.random, 

40 force_consistent: Optional[bool] = None, 

41 trajectory: Optional[str] = None, 

42 logfile: Optional[Union[IO, str]] = None, 

43 append_trajectory: bool = False, 

44 loginterval: int = 1, 

45 ): 

46 """Contour Exploration object. 

47 

48 Parameters: 

49 

50 atoms: Atoms object 

51 The Atoms object to operate on. Atomic velocities are required for 

52 the method. If the atoms object does not contain velocities, 

53 random ones will be applied. 

54 

55 maxstep: float 

56 Used to set the maximum distance an atom can move per 

57 iteration (default value is 0.5 Å). 

58 

59 parallel_drift: float 

60 The fraction of the update step that is parallel to the contour but 

61 in a random direction. Used to break symmetries. 

62 

63 energy_target: float 

64 The total system potential energy for that the potentiostat attepts 

65 to maintain. (defaults the initial potential energy) 

66 

67 angle_limit: float or None 

68 Limits the stepsize to a maximum change of direction angle using the 

69 curvature. Gives a scale-free means of tuning the stepsize on the 

70 fly. Typically less than 30 degrees gives reasonable results but 

71 lower angle limits result in higher potentiostatic accuracy. Units 

72 of degrees. (default 20°) 

73 

74 potentiostat_step_scale: float or None 

75 Scales the size of the potentiostat step. The potentiostat step is 

76 determined by linear extrapolation from the current potential energy 

77 to the target_energy with the current forces. A 

78 potentiostat_step_scale > 1.0 overcorrects and < 1.0 

79 undercorrects. By default, a simple heuristic is used to selected 

80 the valued based on the parallel_drift. (default None) 

81 

82 remove_translation: boolean 

83 When True, the net momentum is removed at each step. Improves 

84 potentiostatic accuracy slightly for bulk systems but should not be 

85 used with constraints. (default False) 

86 

87 use_frenet_serret: Bool 

88 Controls whether or not the Taylor expansion of the Frenet-Serret 

89 formulas for curved path extrapolation are used. Required for using 

90 angle_limit based step scalling. (default True) 

91 

92 initialization_step_scale: float 

93 Controls the scale of the initial step as a multiple of maxstep. 

94 (default 1e-2) 

95 

96 use_target_shift: boolean 

97 Enables shifting of the potentiostat target to compensate for 

98 systematic undercorrection or overcorrection by the potentiostat. 

99 Uses the average of the *target_shift_previous_steps* to prevent 

100 coupled occilations. (default True) 

101 

102 target_shift_previous_steps: int 

103 The number of pevious steps to average when using use_target_shift. 

104 (default 10) 

105 

106 use_tangent_curvature: boolean 

107 Use the velocity unit tangent rather than the contour normals from 

108 forces to compute the curvature. Usually not as accurate. 

109 (default False) 

110 

111 rng: a random number generator 

112 Lets users control the random number generator for the 

113 parallel_drift vector. (default numpy.random) 

114 

115 force_consistent: boolean 

116 (default None) 

117 

118 trajectory: Trajectory object or str (optional) 

119 Attach trajectory object. If *trajectory* is a string a 

120 Trajectory will be constructed. Default: None. 

121 

122 logfile: file object or str (optional) 

123 If *logfile* is a string, a file with that name will be opened. 

124 Use '-' for stdout. Default: None. 

125 

126 loginterval: int (optional) 

127 Only write a log line for every *loginterval* time steps. 

128 Default: 1 

129 

130 append_trajectory: boolean 

131 Defaults to False, which causes the trajectory file to be 

132 overwriten each time the dynamics is restarted from scratch. 

133 If True, the new structures are appended to the trajectory 

134 file instead. 

135 """ 

136 

137 if potentiostat_step_scale is None: 

138 # a heuristic guess since most systems will overshoot when there is 

139 # drift 

140 self.potentiostat_step_scale = 1.1 + 0.6 * parallel_drift 

141 else: 

142 self.potentiostat_step_scale = potentiostat_step_scale 

143 

144 self.rng = rng 

145 self.remove_translation = remove_translation 

146 self.use_frenet_serret = use_frenet_serret 

147 self.use_tangent_curvature = use_tangent_curvature 

148 self.initialization_step_scale = initialization_step_scale 

149 self.maxstep = maxstep 

150 self.angle_limit = angle_limit 

151 self.parallel_drift = parallel_drift 

152 self.use_target_shift = use_target_shift 

153 

154 # These will be populated once self.step() is called, but could be set 

155 # after instantiating with ce = ContourExploration(...) like so: 

156 # ce.Nold = Nold 

157 # ce.r_old = atoms_old.get_positions() 

158 # ce.Told = Told 

159 # to resume a previous contour trajectory. 

160 

161 self.T = None 

162 self.Told = None 

163 self.N = None 

164 self.Nold = None 

165 self.r_old = None 

166 self.r = None 

167 

168 if energy_target is None: 

169 self.energy_target = atoms.get_potential_energy( 

170 force_consistent=True) 

171 else: 

172 self.energy_target = energy_target 

173 

174 # Initizing the previous steps at the target energy slows 

175 # target_shifting untill the system has had 

176 # 'target_shift_previous_steps' steps to equilibrate and should prevent 

177 # occilations. These need to be initialized before the initialize_old 

178 # step to prevent a crash 

179 self.previous_energies = np.full(target_shift_previous_steps, 

180 self.energy_target) 

181 

182 # these first two are purely for logging, 

183 # auto scaling will still occur 

184 # and curvature will still be found if use_frenet_serret == True 

185 self.step_size = 0.0 

186 self.curvature = 0 

187 

188 # loginterval exists for the MolecularDynamics class but not for 

189 # the more general Dynamics class 

190 Dynamics.__init__(self, atoms, 

191 logfile, trajectory, # loginterval, 

192 append_trajectory=append_trajectory, 

193 ) 

194 

195 self._actual_atoms = atoms 

196 

197 # we need velocities or NaNs will be produced, 

198 # if none are provided we make random ones 

199 velocities = self._actual_atoms.get_velocities() 

200 if np.linalg.norm(velocities) < 1e-6: 

201 # we have to pass dimension since atoms are not yet stored 

202 atoms.set_velocities(self.rand_vect()) 

203 

204 # Required stuff for Dynamics 

205 def todict(self): 

206 return {'type': 'contour-exploration', 

207 'dyn-type': self.__class__.__name__, 

208 'stepsize': self.step_size} 

209 

210 def run(self, steps=50): 

211 """ Call Dynamics.run and adjust max_steps """ 

212 return Dynamics.run(self, steps=steps) 

213 

214 def log(self, gradient): 

215 if self.logfile is not None: 

216 # name = self.__class__.__name__ 

217 if self.nsteps == 0: 

218 args = ( 

219 "Step", 

220 "Energy_Target", 

221 "Energy", 

222 "Curvature", 

223 "Step_Size", 

224 "Energy_Deviation_per_atom") 

225 msg = "# %4s %15s %15s %12s %12s %15s\n" % args 

226 self.logfile.write(msg) 

227 e = self._actual_atoms.get_potential_energy(force_consistent=True) 

228 dev_per_atom = (e - self.energy_target) / len(self._actual_atoms) 

229 args = ( 

230 self.nsteps, 

231 self.energy_target, 

232 e, 

233 self.curvature, 

234 self.step_size, 

235 dev_per_atom) 

236 msg = "%6d %15.6f %15.6f %12.6f %12.6f %24.9f\n" % args 

237 self.logfile.write(msg) 

238 

239 def rand_vect(self): 

240 '''Returns a random (Natoms,3) vector''' 

241 vect = self.rng.normal(size=(len(self._actual_atoms), 3)) 

242 return vect 

243 

244 def create_drift_unit_vector(self, N, T): 

245 '''Creates a random drift unit vector with no projection on N or T and 

246 with out a net translation so systems don't wander''' 

247 drift = self.rand_vect() 

248 drift = subtract_projection(drift, N) 

249 drift = subtract_projection(drift, T) 

250 # removes net translation, so systems don't wander 

251 drift = drift - drift.sum(axis=0) / len(self._actual_atoms) 

252 D = normalize(drift) 

253 return D 

254 

255 def compute_step_contributions(self, potentiostat_step_size): 

256 '''Computes the orthogonal component sizes of the step so that the net 

257 step obeys the smaller of step_size or maxstep.''' 

258 if abs(potentiostat_step_size) < self.step_size: 

259 delta_s_perpendicular = potentiostat_step_size 

260 contour_step_size = np.sqrt( 

261 self.step_size**2 - potentiostat_step_size**2) 

262 delta_s_parallel = np.sqrt( 

263 1 - self.parallel_drift**2) * contour_step_size 

264 delta_s_drift = contour_step_size * self.parallel_drift 

265 

266 else: 

267 # in this case all priority goes to potentiostat terms 

268 delta_s_parallel = 0.0 

269 delta_s_drift = 0.0 

270 delta_s_perpendicular = np.sign( 

271 potentiostat_step_size) * self.step_size 

272 

273 return delta_s_perpendicular, delta_s_parallel, delta_s_drift 

274 

275 def _compute_update_without_fs(self, potentiostat_step_size, scale=1.0): 

276 '''Only uses the forces to compute an orthogonal update vector''' 

277 

278 # Without the use of curvature there is no way to estimate the 

279 # limiting step size 

280 self.step_size = self.maxstep * scale 

281 

282 delta_s_perpendicular, delta_s_parallel, delta_s_drift = \ 

283 self.compute_step_contributions( 

284 potentiostat_step_size) 

285 

286 dr_perpendicular = self.N * delta_s_perpendicular 

287 dr_parallel = delta_s_parallel * self.T 

288 

289 D = self.create_drift_unit_vector(self.N, self.T) 

290 dr_drift = D * delta_s_drift 

291 

292 dr = dr_parallel + dr_drift + dr_perpendicular 

293 dr = self.step_size * normalize(dr) 

294 return dr 

295 

296 def _compute_update_with_fs(self, potentiostat_step_size): 

297 '''Uses the Frenet–Serret formulas to perform curvature based 

298 extrapolation to compute the update vector''' 

299 # this should keep the dr clear of the constraints 

300 # by using the actual change, not a velocity vector 

301 delta_r = self.r - self.rold 

302 delta_s = np.linalg.norm(delta_r) 

303 # approximation of delta_s we use this incase an adaptive step_size 

304 # algo get used 

305 

306 delta_T = self.T - self.Told 

307 delta_N = self.N - self.Nold 

308 dTds = delta_T / delta_s 

309 dNds = delta_N / delta_s 

310 if self.use_tangent_curvature: 

311 curvature = np.linalg.norm(dTds) 

312 # on a perfect trajectory, the normal can be computed this way, 

313 # But the normal should always be tied to forces 

314 # N = dTds / curvature 

315 else: 

316 # normals are better since they are fixed to the reality of 

317 # forces. I see smaller forces and energy errors in bulk systems 

318 # using the normals for curvature 

319 curvature = np.linalg.norm(dNds) 

320 self.curvature = curvature 

321 

322 if self.angle_limit is not None: 

323 phi = np.pi / 180 * self.angle_limit 

324 self.step_size = np.sqrt(2 - 2 * np.cos(phi)) / curvature 

325 self.step_size = min(self.step_size, self.maxstep) 

326 

327 # now we can compute a safe step 

328 delta_s_perpendicular, delta_s_parallel, delta_s_drift = \ 

329 self.compute_step_contributions( 

330 potentiostat_step_size) 

331 

332 N_guess = self.N + dNds * delta_s_parallel 

333 T_guess = self.T + dTds * delta_s_parallel 

334 # the extrapolation is good at keeping N_guess and T_guess 

335 # orthogonal but not normalized: 

336 N_guess = normalize(N_guess) 

337 T_guess = normalize(T_guess) 

338 

339 dr_perpendicular = delta_s_perpendicular * (N_guess) 

340 

341 dr_parallel = delta_s_parallel * self.T * \ 

342 (1 - (delta_s_parallel * curvature)**2 / 6.0) \ 

343 + self.N * (curvature / 2.0) * delta_s_parallel**2 

344 

345 D = self.create_drift_unit_vector(N_guess, T_guess) 

346 dr_drift = D * delta_s_drift 

347 

348 # combine the components 

349 dr = dr_perpendicular + dr_parallel + dr_drift 

350 dr = self.step_size * normalize(dr) 

351 # because we guess our orthonormalization directions, 

352 # we renormalize to ensure a correct step size 

353 return dr 

354 

355 def update_previous_energies(self, energy): 

356 '''Updates the energy history in self.previous_energies to include the 

357 current energy.''' 

358 # np.roll shifts the values to keep nice sequential ordering. 

359 self.previous_energies = np.roll(self.previous_energies, 1) 

360 self.previous_energies[0] = energy 

361 

362 def compute_potentiostat_step_size(self, forces, energy): 

363 '''Computes the potentiostat step size by linear extrapolation of the 

364 potential energy using the forces. The step size can be positive or 

365 negative depending on whether or not the energy is too high or too low. 

366 ''' 

367 if self.use_target_shift: 

368 target_shift = self.energy_target - np.mean(self.previous_energies) 

369 else: 

370 target_shift = 0.0 

371 

372 # deltaU is the potential error that will be corrected for 

373 deltaU = energy - (self.energy_target + target_shift) 

374 

375 f_norm = np.linalg.norm(forces) 

376 # can be positive or negative 

377 potentiostat_step_size = (deltaU / f_norm) * \ 

378 self.potentiostat_step_scale 

379 return potentiostat_step_size 

380 

381 def step(self, f=None): 

382 atoms = self._actual_atoms 

383 if f is None: 

384 f = atoms.get_forces() 

385 

386 # get the velocity vector and old kinetic energy for momentum rescaling 

387 velocities = atoms.get_velocities() 

388 KEold = atoms.get_kinetic_energy() 

389 

390 energy = atoms.get_potential_energy(force_consistent=True) 

391 self.update_previous_energies(energy) 

392 potentiostat_step_size = self.compute_potentiostat_step_size(f, energy) 

393 

394 self.N = normalize(f) 

395 self.r = atoms.get_positions() 

396 # remove velocity projection on forces 

397 v_parallel = subtract_projection(velocities, self.N) 

398 self.T = normalize(v_parallel) 

399 

400 if self.use_frenet_serret: 

401 if self.Nold is not None and self.Told is not None: 

402 dr = self._compute_update_with_fs(potentiostat_step_size) 

403 else: 

404 # we must have the old positions and vectors for an FS step 

405 # if we don't, we can only do a small step 

406 dr = self._compute_update_without_fs( 

407 potentiostat_step_size, 

408 scale=self.initialization_step_scale) 

409 else: # of course we can run less accuratly without FS. 

410 dr = self._compute_update_without_fs(potentiostat_step_size) 

411 

412 # now that dr is done, we check if there is translation 

413 if self.remove_translation: 

414 net_motion = dr.sum(axis=0) / len(atoms) 

415 # print(net_motion) 

416 dr = dr - net_motion 

417 dr_unit = dr / np.linalg.norm(dr) 

418 dr = dr_unit * self.step_size 

419 

420 # save old positions before update 

421 self.Nold = self.N 

422 self.rold = self.r 

423 self.Told = self.T 

424 

425 # if we have constraints then this will do the first part of the 

426 # RATTLE algorithm: 

427 # If we can avoid using momenta, this will be simpler. 

428 masses = atoms.get_masses()[:, np.newaxis] 

429 atoms.set_positions(self.r + dr) 

430 new_momenta = (atoms.get_positions() - self.r) * masses # / self.dt 

431 

432 # We need to store the momenta on the atoms before calculating 

433 # the forces, as in a parallel Asap calculation atoms may 

434 # migrate during force calculations, and the momenta need to 

435 # migrate along with the atoms. 

436 atoms.set_momenta(new_momenta, apply_constraint=False) 

437 

438 # Now we get the new forces! 

439 f = atoms.get_forces(md=True) 

440 

441 # I don't really know if removing md=True from above will break 

442 # compatibility with RATTLE, leaving it alone for now. 

443 f_constrained = atoms.get_forces() 

444 # but this projection needs the forces to be consistent with the 

445 # constraints. We have to set the new velocities perpendicular so they 

446 # get logged properly in the trajectory files. 

447 vnew = subtract_projection(atoms.get_velocities(), f_constrained) 

448 # using the md = True forces like this: 

449 # vnew = subtract_projection(atoms.get_velocities(), f) 

450 # will not work with constraints 

451 atoms.set_velocities(vnew) 

452 

453 # rescaling momentum to maintain constant kinetic energy. 

454 KEnew = atoms.get_kinetic_energy() 

455 Ms = np.sqrt(KEold / KEnew) # Ms = Momentum_scale 

456 atoms.set_momenta(Ms * atoms.get_momenta()) 

457 

458 # Normally this would be the second part of RATTLE 

459 # will be done here like this: 

460 # atoms.set_momenta(atoms.get_momenta() + 0.5 * self.dt * f) 

461 return f