Coverage for ase / md / md.py: 84.13%
63 statements
« prev ^ index » next coverage.py v7.13.3, created at 2026-02-04 10:20 +0000
« prev ^ index » next coverage.py v7.13.3, created at 2026-02-04 10:20 +0000
1# fmt: off
3"""Molecular Dynamics."""
4import warnings
5from typing import IO, Optional, Union
7import numpy as np
9from ase import Atoms, units
10from ase.md.logger import MDLogger
11from ase.optimize.optimize import BaseDynamics
14def process_temperature(
15 temperature: Optional[float],
16 temperature_K: Optional[float],
17 orig_unit: str,
18) -> float:
19 """Handle that temperature can be specified in multiple units.
21 For at least a transition period, molecular dynamics in ASE can
22 have the temperature specified in either Kelvin or Electron
23 Volt. The different MD algorithms had different defaults, by
24 forcing the user to explicitly choose a unit we can resolve
25 this. Using the original method then will issue a
26 FutureWarning.
28 Four parameters:
30 temperature: None or float
31 The original temperature specification in whatever unit was
32 historically used. A warning is issued if this is not None and
33 the historical unit was eV.
35 temperature_K: None or float
36 Temperature in Kelvin.
38 orig_unit: str
39 Unit used for the `temperature`` parameter. Must be 'K' or 'eV'.
41 Exactly one of the two temperature parameters must be different from
42 None, otherwise an error is issued.
44 Return value: Temperature in Kelvin.
45 """
46 if (temperature is not None) + (temperature_K is not None) != 1:
47 raise TypeError("Exactly one of the parameters 'temperature',"
48 + " and 'temperature_K', must be given")
49 if temperature is not None:
50 w = "Specify the temperature in K using the 'temperature_K' argument"
51 if orig_unit == 'K':
52 return temperature
53 elif orig_unit == 'eV':
54 warnings.warn(FutureWarning(w))
55 return temperature / units.kB
56 else:
57 raise ValueError("Unknown temperature unit " + orig_unit)
59 assert temperature_K is not None
60 return temperature_K
63class MolecularDynamics(BaseDynamics):
64 """Base-class for all MD classes."""
66 def __init__(
67 self,
68 atoms: Atoms,
69 timestep: float,
70 trajectory: Optional[str] = None,
71 logfile: Optional[Union[IO, str]] = None,
72 loginterval: int = 1,
73 **kwargs,
74 ):
75 """Molecular Dynamics object.
77 Parameters
78 ----------
79 atoms : Atoms object
80 The Atoms object to operate on.
82 timestep : float
83 The time step in ASE time units.
85 trajectory : Trajectory object or str
86 Attach trajectory object. If *trajectory* is a string a
87 Trajectory will be constructed. Use *None* for no
88 trajectory.
90 logfile : file object or str (optional)
91 If *logfile* is a string, a file with that name will be opened.
92 Use '-' for stdout.
94 loginterval : int, default: 1
95 Only write a log line for every *loginterval* time steps.
97 kwargs : dict, optional
98 Extra arguments passed to :class:`~ase.optimize.optimize.Dynamics`.
99 """
100 # dt as to be attached _before_ parent class is initialized
101 self.dt = timestep
103 super().__init__(
104 atoms,
105 logfile=None,
106 trajectory=trajectory,
107 loginterval=loginterval,
108 **kwargs,
109 )
111 # Some codes (e.g. Asap) may be using filters to
112 # constrain atoms or do other things. Current state of the art
113 # is that "atoms" must be either Atoms or Filter in order to
114 # work with dynamics.
115 #
116 # In the future, we should either use a special role interface
117 # for MD, or we should ensure that the input is *always* a Filter.
118 # That way we won't need to test multiple cases. Currently,
119 # we do not test /any/ kind of MD with any kind of Filter in ASE.
120 self.atoms = atoms
121 self.masses = self.atoms.get_masses()
123 if 0 in self.masses:
124 warnings.warn('Zero mass encountered in atoms; this will '
125 'likely lead to errors if the massless atoms '
126 'are unconstrained.')
128 self.masses.shape = (-1, 1)
130 if not self.atoms.has('momenta'):
131 self.atoms.set_momenta(np.zeros([len(self.atoms), 3]))
133 if logfile:
134 logger = self.closelater(
135 MDLogger(dyn=self, atoms=atoms, logfile=logfile,
136 comm=self.comm))
137 self.attach(logger, loginterval)
139 def todict(self):
140 return {'type': 'molecular-dynamics',
141 'md-type': self.__class__.__name__,
142 'timestep': self.dt}
144 def irun(self, steps=50):
145 """Run molecular dynamics algorithm as a generator.
147 Parameters
148 ----------
149 steps : int, default=DEFAULT_MAX_STEPS
150 Number of molecular dynamics steps to be run.
152 Yields
153 ------
154 converged : bool
155 True if the maximum number of steps are reached.
156 """
157 # update the maximum number of steps
158 self.max_steps = self.nsteps + steps
160 if self.nsteps == 0:
161 # For historical reasons we do a magical incantation
162 # here with forces, log, observers.
163 self.atoms.get_forces()
164 self.log()
165 self.call_observers()
167 yield self.nsteps == self.max_steps
169 # run the algorithm until converged or max_steps reached
170 while self.nsteps < self.max_steps:
171 self.step()
172 self.nsteps += 1
173 self.atoms.get_forces()
174 self.log()
175 self.call_observers()
176 yield self.nsteps == self.max_steps
178 def log(self):
179 # Subclasses can override this.
180 return None
182 def run(self, steps=50):
183 """Run molecular dynamics algorithm.
185 Parameters
186 ----------
187 steps : int, default=DEFAULT_MAX_STEPS
188 Number of molecular dynamics steps to be run.
190 Returns
191 -------
192 converged : bool
193 True if the maximum number of steps are reached.
194 """
195 converged = steps == 0
196 for converged in self.irun(steps=steps):
197 pass
198 return converged
200 def get_time(self):
201 return self.nsteps * self.dt
203 def converged(self, gradient=None):
204 """ MD is 'converged' when number of maximum steps is reached. """
205 # We take gradient now (due to optimizers). Should refactor.
206 return self.nsteps >= self.max_steps
208 def _get_com_velocity(self, velocity):
209 """Return the center of mass velocity.
210 Internal use only. This function can be reimplemented by Asap.
211 """
212 return np.dot(self.masses.ravel(), velocity) / self.masses.sum()
214 # Make the process_temperature function available to subclasses
215 # as a static method. This makes it easy for MD objects to use
216 # it, while functions in md.velocitydistribution have access to it
217 # as a function.
218 _process_temperature = staticmethod(process_temperature)