Coverage for /builds/ase/ase/ase/optimize/gpmin/kernel.py: 71.25%
80 statements
« prev ^ index » next coverage.py v7.5.3, created at 2025-08-02 00:12 +0000
« prev ^ index » next coverage.py v7.5.3, created at 2025-08-02 00:12 +0000
1# fmt: off
3import numpy as np
4import numpy.linalg as la
7class Kernel():
8 def __init__(self):
9 pass
11 def set_params(self, params):
12 pass
14 def kernel(self, x1, x2):
15 """Kernel function to be fed to the Kernel matrix"""
17 def K(self, X1, X2):
18 """Compute the kernel matrix """
19 return np.block([[self.kernel(x1, x2) for x2 in X2] for x1 in X1])
22class SE_kernel(Kernel):
23 """Squared exponential kernel without derivatives"""
25 def __init__(self):
26 Kernel.__init__(self)
28 def set_params(self, params):
29 """Set the parameters of the squared exponential kernel.
31 Parameters:
33 params: [weight, l] Parameters of the kernel:
34 weight: prefactor of the exponential
35 l : scale of the kernel
36 """
37 self.weight = params[0]
38 self.l = params[1]
40 def squared_distance(self, x1, x2):
41 """Returns the norm of x1-x2 using diag(l) as metric """
42 return np.sum((x1 - x2) * (x1 - x2)) / self.l**2
44 def kernel(self, x1, x2):
45 """ This is the squared exponential function"""
46 return self.weight**2 * np.exp(-0.5 * self.squared_distance(x1, x2))
48 def dK_dweight(self, x1, x2):
49 """Derivative of the kernel respect to the weight """
50 return 2 * self.weight * np.exp(-0.5 * self.squared_distance(x1, x2))
52 def dK_dl(self, x1, x2):
53 """Derivative of the kernel respect to the scale"""
54 return self.kernel * la.norm(x1 - x2)**2 / self.l**3
57class SquaredExponential(SE_kernel):
58 """Squared exponential kernel with derivatives.
59 For the formulas see Koistinen, Dagbjartsdottir, Asgeirsson, Vehtari,
60 Jonsson.
61 Nudged elastic band calculations accelerated with Gaussian process
62 regression. Section 3.
64 Before making any predictions, the parameters need to be set using the
65 method SquaredExponential.set_params(params) where the parameters are a
66 list whose first entry is the weight (prefactor of the exponential) and
67 the second is the scale (l).
69 Parameters:
71 dimensionality: The dimensionality of the problem to optimize, typically
72 3*N where N is the number of atoms. If dimensionality is
73 None, it is computed when the kernel method is called.
75 Attributes:
76 ----------------
77 D: int. Dimensionality of the problem to optimize
78 weight: float. Multiplicative constant to the exponenetial kernel
79 l : float. Length scale of the squared exponential kernel
81 Relevant Methods:
82 ----------------
83 set_params: Set the parameters of the Kernel, i.e. change the
84 attributes
85 kernel_function: Squared exponential covariance function
86 kernel: covariance matrix between two points in the manifold.
87 Note that the inputs are arrays of shape (D,)
88 kernel_matrix: Kernel matrix of a data set to itself, K(X,X)
89 Note the input is an array of shape (nsamples, D)
90 kernel_vector Kernel matrix of a point x to a dataset X, K(x,X).
92 gradient: Gradient of K(X,X) with respect to the parameters of
93 the kernel i.e. the hyperparameters of the Gaussian
94 process.
95 """
97 def __init__(self, dimensionality=None):
98 self.D = dimensionality
99 SE_kernel.__init__(self)
101 def kernel_function(self, x1, x2):
102 """ This is the squared exponential function"""
103 return self.weight**2 * np.exp(-0.5 * self.squared_distance(x1, x2))
105 def kernel_function_gradient(self, x1, x2):
106 """Gradient of kernel_function respect to the second entry.
107 x1: first data point
108 x2: second data point
109 """
110 prefactor = (x1 - x2) / self.l**2
111 # return prefactor * self.kernel_function(x1,x2)
112 return prefactor
114 def kernel_function_hessian(self, x1, x2):
115 """Second derivatives matrix of the kernel function"""
116 P = np.outer(x1 - x2, x1 - x2) / self.l**2
117 prefactor = (np.identity(self.D) - P) / self.l**2
118 return prefactor
120 def kernel(self, x1, x2):
121 """Squared exponential kernel including derivatives.
122 This function returns a D+1 x D+1 matrix, where D is the dimension of
123 the manifold.
124 """
125 K = np.identity(self.D + 1)
126 K[0, 1:] = self.kernel_function_gradient(x1, x2)
127 K[1:, 0] = -K[0, 1:]
128 # K[1:,1:] = self.kernel_function_hessian(x1, x2)
129 P = np.outer(x1 - x2, x1 - x2) / self.l**2
130 K[1:, 1:] = (K[1:, 1:] - P) / self.l**2
131 # return np.block([[k,j2],[j1,h]])*self.kernel_function(x1, x2)
132 return K * self.kernel_function(x1, x2)
134 def kernel_matrix(self, X):
135 """This is the same method than self.K for X1=X2, but using the matrix
136 is then symmetric.
137 """
138 n, D = np.atleast_2d(X).shape
139 K = np.identity(n * (D + 1))
140 self.D = D
141 D1 = D + 1
143 # fill upper triangular:
144 for i in range(n):
145 for j in range(i + 1, n):
146 k = self.kernel(X[i], X[j])
147 K[i * D1:(i + 1) * D1, j * D1:(j + 1) * D1] = k
148 K[j * D1:(j + 1) * D1, i * D1:(i + 1) * D1] = k.T
149 K[i * D1:(i + 1) * D1, i * D1:(i + 1) * D1] = self.kernel(
150 X[i], X[i])
151 return K
153 def kernel_vector(self, x, X, nsample):
154 return np.hstack([self.kernel(x, x2) for x2 in X])
156 # ---------Derivatives--------
157 def dK_dweight(self, X):
158 """Return the derivative of K(X,X) respect to the weight """
159 return self.K(X, X) * 2 / self.weight
161 # ----Derivatives of the kernel function respect to the scale ---
162 def dK_dl_k(self, x1, x2):
163 """Returns the derivative of the kernel function respect to l"""
164 return self.squared_distance(x1, x2) / self.l
166 def dK_dl_j(self, x1, x2):
167 """Returns the derivative of the gradient of the kernel function
168 respect to l
169 """
170 prefactor = -2 * (1 - 0.5 * self.squared_distance(x1, x2)) / self.l
171 return self.kernel_function_gradient(x1, x2) * prefactor
173 def dK_dl_h(self, x1, x2):
174 """Returns the derivative of the hessian of the kernel function respect
175 to l
176 """
177 I = np.identity(self.D)
178 P = np.outer(x1 - x2, x1 - x2) / self.l**2
179 prefactor = 1 - 0.5 * self.squared_distance(x1, x2)
180 return -2 * (prefactor * (I - P) - P) / self.l**3
182 def dK_dl_matrix(self, x1, x2):
183 k = np.asarray(self.dK_dl_k(x1, x2)).reshape((1, 1))
184 j2 = self.dK_dl_j(x1, x2).reshape(1, -1)
185 j1 = self.dK_dl_j(x2, x1).reshape(-1, 1)
186 h = self.dK_dl_h(x1, x2)
187 return np.block([[k, j2], [j1, h]]) * self.kernel_function(x1, x2)
189 def dK_dl(self, X):
190 """Return the derivative of K(X,X) respect of l"""
191 return np.block([[self.dK_dl_matrix(x1, x2) for x2 in X] for x1 in X])
193 def gradient(self, X):
194 """Computes the gradient of matrix K given the data respect to the
195 hyperparameters. Note matrix K here is self.K(X,X).
196 Returns a 2-entry list of n(D+1) x n(D+1) matrices
197 """
198 return [self.dK_dweight(X), self.dK_dl(X)]