Source code for ase.md.andersen

"""Andersen dynamics class."""

import warnings

from numpy import cos, log, ones, pi, random, repeat

from ase import Atoms, units
from ase.md.md import MolecularDynamics


[docs] class Andersen(MolecularDynamics): """Andersen (constant N, V, T) molecular dynamics.""" def __init__( self, atoms: Atoms, timestep: float, temperature_K: float, andersen_prob: float, fixcm: bool = True, rng=random, **kwargs, ): """ Parameters ---------- atoms: Atoms object The list of atoms. timestep: float The time step in ASE time units. temperature_K: float The desired temperature, in Kelvin. andersen_prob: float A random collision probability, typically 1e-4 to 1e-1. With this probability atoms get assigned random velocity components. fixcm: bool (optional) If True, the position and momentum of the center of mass is kept unperturbed. Default: True. rng: RNG object, default: ``numpy.random`` Random number generator. This must have the ``random`` method with the same signature as ``numpy.random.random``. **kwargs : dict, optional Additional arguments passed to :class:~ase.md.md.MolecularDynamics base class. The temperature is imposed by stochastic collisions with a heat bath that acts on velocity components of randomly chosen particles. The algorithm randomly decorrelates velocities, so dynamical properties like diffusion or viscosity cannot be properly measured. H. C. Andersen, J. Chem. Phys. 72 (4), 2384–2393 (1980) """ if 'communicator' in kwargs: msg = ( '`communicator` has been deprecated since ASE 3.25.0 ' 'and will be removed in ASE 3.26.0. Use `comm` instead.' ) warnings.warn(msg, FutureWarning) kwargs['comm'] = kwargs.pop('communicator') self.temp = units.kB * temperature_K self.andersen_prob = andersen_prob self.fix_com = fixcm self.rng = rng MolecularDynamics.__init__(self, atoms, timestep, **kwargs) def set_temperature(self, temperature_K): self.temp = units.kB * temperature_K def set_andersen_prob(self, andersen_prob): self.andersen_prob = andersen_prob def set_timestep(self, timestep): self.dt = timestep def boltzmann_random(self, width, size): x = self.rng.random(size=size) y = self.rng.random(size=size) z = width * cos(2 * pi * x) * (-2 * log(1 - y)) ** 0.5 return z def get_maxwell_boltzmann_velocities(self): natoms = len(self.atoms) masses = repeat(self.masses, 3).reshape(natoms, 3) width = (self.temp / masses) ** 0.5 velos = self.boltzmann_random(width, size=(natoms, 3)) return velos # [[x, y, z],] components for each atom def step(self, forces=None): atoms = self.atoms if forces is None: forces = atoms.get_forces(md=True) self.v = atoms.get_velocities() # Random atom-wise variables are stored as attributes and broadcasted: # - self.random_com_velocity # added to all atoms if self.fix_com # - self.random_velocity # added to some atoms if the per-atom # - self.andersen_chance # andersen_chance <= andersen_prob # a dummy communicator will be used for serial runs if self.fix_com: # add random velocity to center of mass to prepare Andersen width = (self.temp / sum(self.masses)) ** 0.5 self.random_com_velocity = ones( self.v.shape ) * self.boltzmann_random(width, (3)) self.comm.broadcast(self.random_com_velocity, 0) self.v += self.random_com_velocity self.v += 0.5 * forces / self.masses * self.dt # apply Andersen thermostat self.random_velocity = self.get_maxwell_boltzmann_velocities() self.andersen_chance = self.rng.random(size=self.v.shape) self.comm.broadcast(self.random_velocity, 0) self.comm.broadcast(self.andersen_chance, 0) self.v[self.andersen_chance <= self.andersen_prob] = ( self.random_velocity[self.andersen_chance <= self.andersen_prob] ) x = atoms.get_positions() if self.fix_com: old_com = atoms.get_center_of_mass() self.v -= self._get_com_velocity(self.v) # Step: x^n -> x^(n+1) - this applies constraints if any atoms.set_positions(x + self.v * self.dt) if self.fix_com: atoms.set_center_of_mass(old_com) # recalc velocities after RATTLE constraints are applied self.v = (atoms.get_positions() - x) / self.dt forces = atoms.get_forces(md=True) # Update the velocities self.v += 0.5 * forces / self.masses * self.dt if self.fix_com: self.v -= self._get_com_velocity(self.v) # Second part of RATTLE taken care of here atoms.set_momenta(self.v * self.masses) return forces