Source code for ase.optimize.bfgslinesearch

# fmt: off

# ******NOTICE***************
# optimize.py module by Travis E. Oliphant
#
# You may copy and use this module as you see fit with no
# guarantee implied provided you keep this notice in all copies.
# *****END NOTICE************

import time
from typing import IO, Optional, Union

import numpy as np
from numpy import absolute, eye, isinf

from ase import Atoms
from ase.optimize.optimize import Optimizer
from ase.utils.linesearch import LineSearch

# These have been copied from Numeric's MLab.py
# I don't think they made the transition to scipy_core

# Modified from scipy_optimize
abs = absolute
pymin = min
pymax = max
__version__ = '0.1'


[docs] class BFGSLineSearch(Optimizer): def __init__( self, atoms: Atoms, restart: Optional[str] = None, logfile: Union[IO, str] = '-', maxstep: float = None, trajectory: Optional[str] = None, c1: float = 0.23, c2: float = 0.46, alpha: float = 10.0, stpmax: float = 50.0, **kwargs, ): """Optimize atomic positions in the BFGSLineSearch algorithm, which uses both forces and potential energy information. Parameters ---------- atoms: :class:`~ase.Atoms` The Atoms object to relax. restart: str JSON file used to store hessian matrix. If set, file with such a name will be searched and hessian matrix stored will be used, if the file exists. trajectory: str Trajectory file used to store optimisation path. maxstep: float Used to set the maximum distance an atom can move per iteration (default value is 0.2 Angstroms). logfile: file object or str If *logfile* is a string, a file with that name will be opened. Use '-' for stdout. kwargs : dict, optional Extra arguments passed to :class:`~ase.optimize.optimize.Optimizer`. """ if maxstep is None: self.maxstep = self.defaults['maxstep'] else: self.maxstep = maxstep self.stpmax = stpmax self.alpha = alpha self.H = None self.c1 = c1 self.c2 = c2 self.force_calls = 0 self.function_calls = 0 self.r0 = None self.g0 = None self.e0 = None self.load_restart = False self.task = 'START' self.rep_count = 0 self.p = None self.alpha_k = None self.no_update = False self.replay = False Optimizer.__init__(self, atoms, restart, logfile, trajectory, **kwargs) def read(self): self.r0, self.g0, self.e0, self.task, self.H = self.load() self.load_restart = True def reset(self): self.H = None self.r0 = None self.g0 = None self.e0 = None self.rep_count = 0 def step(self, forces=None): optimizable = self.optimizable if forces is None: forces = optimizable.get_gradient().reshape(-1, 3) r = optimizable.get_x() g = -forces.reshape(-1) / self.alpha p0 = self.p self.update(r, g, self.r0, self.g0, p0) # o,v = np.linalg.eigh(self.B) e = self.func(r) self.p = -np.dot(self.H, g) p_size = np.sqrt((self.p**2).sum()) if p_size <= np.sqrt(optimizable.ndofs() / 3 * 1e-10): self.p /= (p_size / np.sqrt(optimizable.ndofs() / 3 * 1e-10)) ls = LineSearch() self.alpha_k, e, self.e0, self.no_update = \ ls._line_search(self.func, self.fprime, r, self.p, g, e, self.e0, maxstep=self.maxstep, c1=self.c1, c2=self.c2, stpmax=self.stpmax) if self.alpha_k is None: raise RuntimeError("LineSearch failed!") dr = self.alpha_k * self.p optimizable.set_x(r + dr) self.r0 = r self.g0 = g self.dump((self.r0, self.g0, self.e0, self.task, self.H)) def update(self, r, g, r0, g0, p0): self.I = eye(self.optimizable.ndofs(), dtype=int) if self.H is None: self.H = eye(self.optimizable.ndofs()) # self.B = np.linalg.inv(self.H) return else: dr = r - r0 dg = g - g0 # self.alpha_k can be None!!! if not (((self.alpha_k or 0) > 0 and abs(np.dot(g, p0)) - abs(np.dot(g0, p0)) < 0) or self.replay): return if self.no_update is True: print('skip update') return try: # this was handled in numeric, let it remain for more safety rhok = 1.0 / (np.dot(dg, dr)) except ZeroDivisionError: rhok = 1000.0 print("Divide-by-zero encountered: rhok assumed large") if isinf(rhok): # this is patch for np rhok = 1000.0 print("Divide-by-zero encountered: rhok assumed large") A1 = self.I - dr[:, np.newaxis] * dg[np.newaxis, :] * rhok A2 = self.I - dg[:, np.newaxis] * dr[np.newaxis, :] * rhok self.H = (np.dot(A1, np.dot(self.H, A2)) + rhok * dr[:, np.newaxis] * dr[np.newaxis, :]) # self.B = np.linalg.inv(self.H) def func(self, x): """Objective function for use of the optimizers""" self.optimizable.set_x(x) self.function_calls += 1 # Scale the problem as SciPy uses I as initial Hessian. return self.optimizable.get_value() / self.alpha def fprime(self, x): """Gradient of the objective function for use of the optimizers""" self.optimizable.set_x(x) self.force_calls += 1 # Remember that forces are minus the gradient! # Scale the problem as SciPy uses I as initial Hessian. forces = self.optimizable.get_gradient() return - forces / self.alpha def replay_trajectory(self, traj): """Initialize hessian from old trajectory.""" self.replay = True from ase.utils import IOContext with IOContext() as files: if isinstance(traj, str): from ase.io.trajectory import Trajectory traj = files.closelater(Trajectory(traj, mode='r')) r0 = None g0 = None for i in range(len(traj) - 1): r = traj[i].get_positions().ravel() g = - traj[i].get_forces().ravel() / self.alpha self.update(r, g, r0, g0, self.p) self.p = -np.dot(self.H, g) r0 = r.copy() g0 = g.copy() self.r0 = r0 self.g0 = g0 def log(self, gradient): if self.logfile is None: return fmax = self.optimizable.gradient_norm(gradient) e = self.optimizable.get_value() T = time.localtime() name = self.__class__.__name__ w = self.logfile.write if self.nsteps == 0: w('%s %4s[%3s] %8s %15s %12s\n' % (' ' * len(name), 'Step', 'FC', 'Time', 'Energy', 'fmax')) w('%s: %3d[%3d] %02d:%02d:%02d %15.6f %12.4f\n' % (name, self.nsteps, self.force_calls, T[3], T[4], T[5], e, fmax)) self.logfile.flush()
def wrap_function(function, args): ncalls = [0] def function_wrapper(x): ncalls[0] += 1 return function(x, *args) return ncalls, function_wrapper